Rhythmic coordination and ensemble dynamics in the hippocampal-prefrontal network during odor-place associative memory and decision making

Abstract

Memory-guided decision making involves long-range coordination across sensory and cognitive brain networks, with key roles for the hippocampus and prefrontal cortex (PFC). In order to investigate the mechanisms of such coordination, we monitored activity in hippocampus (CA1), PFC, and olfactory bulb (OB) in rats performing an odor-place associative memory guided decision task on a T-maze. During odor sampling, the beta (20-30 Hz) and respiratory (7-8 Hz) rhythms (RR) were prominent across the three regions, with beta and RR coherence between all pairs of regions enhanced during the odor-cued decision making period. Beta phase modulation of phase-locked CA1 and PFC neurons during this period was linked to accurate decisions, with a key role of CA1 interneurons in temporal coordination. Single neurons and ensembles in both CA1 and PFC encoded and predicted animals' upcoming choices, with different cell ensembles engaged during decision-making and decision execution on the maze. Our findings indicate that rhythmic coordination within the hippocampal-prefrontal-olfactory bulb network supports utilization of odor cues for memory-guided decision making.

Data availability

Data is available for download on figshare:Data DOI: https://doi.org/10.6084/m9.figshare.19620783.v1

The following data sets were generated

Article and author information

Author details

  1. Claire A Symanski

    Neuroscience Program, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. John H Bladon

    Department of Psychology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Emi T Kullberg

    Neuroscience Program, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Paul Miller

    Neuroscience Program, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shantanu P Jadhav

    Neuroscience Program, Brandeis University, Waltham, United States
    For correspondence
    shantanu@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5821-0551

Funding

National Institute of Mental Health (R01MH120228)

  • Shantanu P Jadhav

National Institute of Mental Health (R01MH112661)

  • Shantanu P Jadhav

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by the Brandeis University InstitutionalAnimal Care and Usage Committee (IACUC) and conformed to US National Institutes of Health. Procedures were approved under IACUC Protocol # 21001

Copyright

© 2022, Symanski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,962
    views
  • 318
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claire A Symanski
  2. John H Bladon
  3. Emi T Kullberg
  4. Paul Miller
  5. Shantanu P Jadhav
(2022)
Rhythmic coordination and ensemble dynamics in the hippocampal-prefrontal network during odor-place associative memory and decision making
eLife 11:e79545.
https://doi.org/10.7554/eLife.79545

Share this article

https://doi.org/10.7554/eLife.79545

Further reading

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.

    1. Neuroscience
    Gáspár Oláh, Rajmund Lákovics ... Gábor Tamás
    Research Article

    Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.