Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons

  1. Zinan Wang  Is a corresponding author
  2. Joseph P Receveur
  3. Jian Pu
  4. Haosu Cong
  5. Cole Richards
  6. Muxuan Liang
  7. Henry Chung  Is a corresponding author
  1. Michigan State University, United States
  2. University of Florida, United States

Abstract

Maintaining water balance is a universal challenge for organisms living in terrestrial environments, especially for insects, which have essential roles in our ecosystem. Although the high surface area to volume ratio in insects makes them vulnerable to water loss, insects have evolved different levels of desiccation resistance to adapt to diverse environments. To withstand desiccation, insects use a lipid layer called cuticular hydrocarbons (CHCs) to reduce water evaporation from the body surface. It has long been hypothesized that the waterproofing capability of this CHC layer, which can confer different levels of desiccation resistance, depends on its chemical composition. However, it is unknown which CHC components are important contributors to desiccation resistance and how these components can determine differences in desiccation resistance. In this study, we used machine learning algorithms, correlation analyses, and synthetic CHCs to investigate how different CHC components affect desiccation resistance in 50 Drosophila and related species. We showed that desiccation resistance differences across these species can be largely explained by variation in CHC composition. In particular, length variation in a subset of CHCs, the methyl-branched CHCs (mbCHCs), is a key determinant of desiccation resistance. There is also a significant correlation between the evolution of longer mbCHCs and higher desiccation resistance in these species. Given that CHCs are almost ubiquitous in insects, we suggest that evolutionary changes in insect CHC components can be a general mechanism for the evolution of desiccation resistance and adaptation to diverse and changing environments.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting source data file. Code used is uploaded as source code 1-3.

Article and author information

Author details

  1. Zinan Wang

    Department of Entomology, Michigan State University, East Lansing, United States
    For correspondence
    wangzina@msu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0509-4902
  2. Joseph P Receveur

    Department of Entomology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jian Pu

    Department of Entomology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Haosu Cong

    Department of Entomology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Cole Richards

    Department of Entomology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Muxuan Liang

    Department of Biostatistics, University of Florida, Gainsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Henry Chung

    Department of Entomology, Michigan State University, East Lansing, United States
    For correspondence
    hwchung@msu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5056-2755

Funding

National Science Foundation (2054773)

  • Henry Chung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,283
    views
  • 438
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zinan Wang
  2. Joseph P Receveur
  3. Jian Pu
  4. Haosu Cong
  5. Cole Richards
  6. Muxuan Liang
  7. Henry Chung
(2022)
Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons
eLife 11:e80859.
https://doi.org/10.7554/eLife.80859

Share this article

https://doi.org/10.7554/eLife.80859

Further reading

    1. Ecology
    Ming-Qiang Wang, Shi-Kun Guo ... Chao-Dong Zhu
    Research Article

    Environmental factors can influence ecological networks, but these effects are poorly understood in the realm of the phylogeny of host-parasitoid interactions. Especially, we lack a comprehensive understanding of the ways that biotic factors, including plant species richness, overall community phylogenetic and functional composition of consumers, and abiotic factors such as microclimate, determine host-parasitoid network structure and host-parasitoid community dynamics. To address this, we leveraged a 5-year dataset of trap-nesting bees and wasps and their parasitoids collected in a highly controlled, large-scale subtropical tree biodiversity experiment. We tested for effects of tree species richness, tree phylogenetic, and functional diversity, and species and phylogenetic composition on species and phylogenetic diversity of both host and parasitoid communities and the composition of their interaction networks. We show that multiple components of tree diversity and canopy cover impacted both, species and phylogenetic composition of hosts and parasitoids. Generally, phylogenetic associations between hosts and parasitoids reflected nonrandomly structured interactions between phylogenetic trees of hosts and parasitoids. Further, host-parasitoid network structure was influenced by tree species richness, tree phylogenetic diversity, and canopy cover. Our study indicates that the composition of higher trophic levels and corresponding interaction networks are determined by plant diversity and canopy cover, especially via trophic links in species-rich ecosystems.

    1. Ecology
    Itai Bloch, David Troupin ... Nir Sapir
    Research Article

    Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts (Apus affinis) in response to insect movements over Israel’s Hula Valley. Insect movement traffic rate (MoTR) substantially varied across days, strongly influencing swift movement. On days with high MoTR, swifts exhibited reduced flight distance, increased colony visit rate, and earlier arrivals at the breeding colony, reflecting a dynamic response to prey availability. However, no significant effects were observed in total foraging duration, flight speed, or daily route length. Notably, as insect abundance increased, inter-individual distances decreased. These findings suggest that Little Swifts optimize their foraging behavior in relation to aerial insect abundance, likely influencing reproductive success and population dynamics. The integration of radar technology and biotelemetry systems provides a unique perspective on the interactions between aerial insectivores and their prey, contributing to a comprehensive understanding of optimal foraging strategies in diverse environments.