Mammalian forelimb evolution is driven by uneven proximal-to-distal morphological diversity

  1. Priscila S Rothier  Is a corresponding author
  2. Anne-Claire Fabre
  3. Julien Clavel
  4. Roger BJ Benson
  5. Anthony Herrel
  1. Muséum National d'Histoire Naturelle, France
  2. Naturhistorisches Museum Bern, Switzerland
  3. Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023, France
  4. University of Oxford, United Kingdom

Abstract

Vertebrate limb morphology often reflects the environment due to variation in locomotor requirements. However, proximal and distal limb segments may evolve differently from one another, reflecting an anatomical gradient of functional specialization that has been suggested to be impacted by the timing of development. Here we explore whether the temporal sequence of bone condensation predicts variation in the capacity of evolution to generate morphological diversity in proximal and distal forelimb segments across more than 600 species of mammals. Distal elements not only exhibit greater shape diversity, but also show stronger within-element integration and, on average, faster evolutionary responses than intermediate and upper limb segments. Results are consistent with the hypothesis that late developing distal bones display greater morphological variation than more proximal limb elements. However, the higher integration observed within the autopod deviates from such developmental predictions, suggesting that functional specialization plays an important role in driving within-element covariation. Proximal and distal limb segments also show different macroevolutionary patterns, albeit not showing a perfect proximo-distal gradient. The high disparity of the mammalian autopod, reported here, is consistent with the higher potential of development to generate variation in more distal limb structures, as well as functional specialization of the distal elements.

Data availability

Morphometric data and R codes are available on Dryad (DOI: 10.5061/dryad.0cfxpnw6h)

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Priscila S Rothier

    Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
    For correspondence
    priscilasrd@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3017-6528
  2. Anne-Claire Fabre

    Naturhistorisches Museum Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Julien Clavel

    Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023, Villeurbanne, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Roger BJ Benson

    Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Anthony Herrel

    Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Paris, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico (204841/2018-6)

  • Priscila S Rothier

European Research Council (2015-STG-677774)

  • Roger BJ Benson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Rothier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,598
    views
  • 440
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Priscila S Rothier
  2. Anne-Claire Fabre
  3. Julien Clavel
  4. Roger BJ Benson
  5. Anthony Herrel
(2023)
Mammalian forelimb evolution is driven by uneven proximal-to-distal morphological diversity
eLife 12:e81492.
https://doi.org/10.7554/eLife.81492

Share this article

https://doi.org/10.7554/eLife.81492

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.