Uncertainty alters the balance between incremental learning and episodic memory

  1. Jonathan Nicholas  Is a corresponding author
  2. Nathaniel D Daw
  3. Daphna Shohamy
  1. Columbia University, United States
  2. Princeton University, United States

Abstract

A key question in decision making is how humans arbitrate between competing learning and memory systems to maximize reward. We address this question by probing the balance between the effects, on choice, of incremental trial-and-error learning versus episodic memories of individual events. Although a rich literature has studied incremental learning in isolation, the role of episodic memory in decision making has only recently drawn focus, and little research disentangles their separate contributions. We hypothesized that the brain arbitrates rationally between these two systems, relying on each in circumstances to which it is most suited, as indicated by uncertainty. We tested this hypothesis by directly contrasting contributions of episodic and incremental influence to decisions, while manipulating the relative uncertainty of incremental learning using a well-established manipulation of reward volatility. Across two large, independent samples of young adults, participants traded these influences off rationally, depending more on episodic information when incremental summaries were more uncertain. These results support the proposal that the brain optimizes the balance between different forms of learning and memory according to their relative uncertainties and elucidate the circumstances under which episodic memory informs decisions.

Data availability

All code, data, and software needed to reproduce the manuscript can be found here: https://codeocean.com/capsule/2024716/tree/v1; DOI: https://doi.org/10.24433/CO.1266819.v1

The following data sets were generated

Article and author information

Author details

  1. Jonathan Nicholas

    Columbia University, New York, United States
    For correspondence
    jonathan.nicholas@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2314-0765
  2. Nathaniel D Daw

    Department of Psychology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5029-1430
  3. Daphna Shohamy

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (1644869)

  • Jonathan Nicholas

National Science Foundation (1822619)

  • Nathaniel D Daw

National Science Foundation (1822619)

  • Daphna Shohamy

National Institutes of Health (MH121093)

  • Nathaniel D Daw

National Institutes of Health (MH121093)

  • Daphna Shohamy

John Templeton Foundation (60844)

  • Daphna Shohamy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent was obtained online with approval from the Columbia University Institutional Review Board (IRB #1488)

Copyright

© 2022, Nicholas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,440
    views
  • 373
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan Nicholas
  2. Nathaniel D Daw
  3. Daphna Shohamy
(2022)
Uncertainty alters the balance between incremental learning and episodic memory
eLife 11:e81679.
https://doi.org/10.7554/eLife.81679

Share this article

https://doi.org/10.7554/eLife.81679

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.