Dynamics of immune memory and learning in bacterial communities

  1. Madeleine Bonsma-Fisher
  2. Sidhartha Goyal  Is a corresponding author
  1. University of Toronto, Canada

Abstract

From bacteria to humans, adaptive immune systems provide learned memories of past infections. Despite their vast biological differences, adaptive immunity shares features from microbes to vertebrates such as emergent immune diversity, long-term coexistence of hosts and pathogens, and fitness pressures from evolving pathogens and adapting hosts, yet there is no conceptual model that addresses all of these together. To this end, we propose and solve a simple phenomenological model of CRISPR-based adaptive immunity in microbes. We show that in coexisting phage and bacteria populations, immune diversity in both populations is coupled and emerges spontaneously, that bacteria track phage evolution with a context-dependent lag, and that high levels of diversity are paradoxically linked to low overall CRISPR immunity. We define average immunity, an important summary parameter predicted by our model, and use it to perform synthetic time-shift analyses on available experimental data to reveal different modalities of coevolution. Finally, immune cross-reactivity in our model leads to qualitatively different states of evolutionary dynamics, including an influenza-like traveling wave regime that resembles a similar state in models of vertebrate adaptive immunity. Our results show that CRISPR immunity provides a tractable model, both theoretically and experimentally, to understand general features of adaptive immunity.

Data availability

Source code and data is available for all main text figures on GitHub at https://github.com/mbonsma/CRISPR-dynamics-model.Source data for Figures 6E-G and 7C-D is available on GitHub at https://github.com/mbonsma/CRISPR-dynamics-model.Raw simulation data has been uploaded to Dryad: https://doi.org/10.5061/dryad.sn02v6x74.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Madeleine Bonsma-Fisher

    Department of Physics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5813-4664
  2. Sidhartha Goyal

    Department of Physics, University of Toronto, Toronto, Canada
    For correspondence
    goyal@physics.utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7452-892X

Funding

Natural Sciences and Engineering Research Council of Canada (Vanier Canada Graduate Scholarship)

  • Madeleine Bonsma-Fisher

Ministry of Colleges and Universities (Queen Elizabeth II Graduate Scholarship in Science & Technology)

  • Madeleine Bonsma-Fisher

Walter C. Sumner Foundation (Walter C. Sumner Memorial Fellowship)

  • Madeleine Bonsma-Fisher

Natural Sciences and Engineering Research Council of Canada (Discovery Grant RGPIN-2015)

  • Sidhartha Goyal

Natural Sciences and Engineering Research Council of Canada (Discovery Grant and RGPIN-2021)

  • Sidhartha Goyal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Bonsma-Fisher & Goyal

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 927
    views
  • 210
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Madeleine Bonsma-Fisher
  2. Sidhartha Goyal
(2023)
Dynamics of immune memory and learning in bacterial communities
eLife 12:e81692.
https://doi.org/10.7554/eLife.81692

Share this article

https://doi.org/10.7554/eLife.81692

Further reading

    1. Physics of Living Systems
    James E Hammond, Ruth E Baker, Berta Verd
    Research Article

    Vertebrates have evolved great diversity in the number of segments dividing the trunk body, however, the developmental origin of the evolvability of this trait is poorly understood. The number of segments is thought to be determined in embryogenesis as a product of morphogenesis of the pre-somitic mesoderm (PSM) and the periodicity of a molecular oscillator active within the PSM known as the segmentation clock. Here, we explore whether the clock and PSM morphogenesis exhibit developmental modularity, as independent evolution of these two processes may explain the high evolvability of segment number. Using a computational model of the clock and PSM parameterised for zebrafish, we find that the clock is broadly robust to variation in morphogenetic processes such as cell ingression, motility, compaction, and cell division. We show that this robustness is in part determined by the length of the PSM and the strength of phase coupling in the clock. As previous studies report no changes to morphogenesis upon perturbing the clock, we suggest that the clock and morphogenesis of the PSM exhibit developmental modularity.

    1. Physics of Living Systems
    Emmanuel Akabuogu, Victor Carneiro da Cunha Martorelli ... Thomas A Waigh
    Research Article

    Bacterial biofilms are communities of bacteria usually attached to solid strata and often differentiated into complex structures. Communication across biofilms has been shown to involve chemical signaling and, more recently, electrical signaling in Gram-positive biofilms. We report for the first time, community-level synchronized membrane potential dynamics in three-dimensional Escherichia coli biofilms. Two hyperpolarization events are observed in response to light stress. The first requires mechanically sensitive ion channels (MscK, MscL, and MscS) and the second needs the Kch-potassium channel. The channels mediated both local spiking of single E. coli biofilms and long-range coordinated electrical signaling in E. coli biofilms. The electrical phenomena are explained using Hodgkin-Huxley and 3D fire-diffuse-fire agent-based models. These data demonstrate that electrical wavefronts based on potassium ions are a mechanism by which signaling occurs in Gram-negative biofilms and as such may represent a conserved mechanism for communication across biofilms.