Associations of ABO and rhesus d blood groups with phenome-wide disease incidence: a 41-year retrospective cohort study of 482,914 patients
Abstract
Background: Whether natural selection may have attributed to the observed blood group frequency differences between populations remains debatable. The ABO system has been associated with several diseases and recently also with susceptibility to COVID-19 infection. Associative studies of the RhD system and diseases are sparser. A large disease-wide risk analysis may further elucidate the relationship between the ABO/RhD blood groups and disease incidence.
Methods: We performed a systematic log-linear quasi-Poisson regression analysis of the ABO/RhD blood groups across 1,312 phecode diagnoses. Unlike prior studies, we determined the incidence rate ratio foreach individual ABO blood group relative to all other ABO blood groups as opposed to using blood group O as the reference. Moreover, we used up to 41-years of nationwide Danish follow-up data, and a disease categorization scheme specifically developed for diagnosis-wide analysis. Further, we determined associations between the ABO/RhD blood groups and the age at the first diagnosis. Estimates were adjusted for multiple testing.
Results: The retrospective cohort included 482,914 Danish patients (60.4% females). The incidence rate ratios (IRRs) of 101 phecodes were found statistically significant between the ABO blood groups, while the IRRs of 28 phecodes were found statistically significant for the RhD blood group. The associations included cancers and musculoskeletal-, genitourinary-, endocrinal-, infectious-, cardiovascular-, and gastrointestinal diseases.
Conclusions: We found associations of disease-wide susceptibility differences between the blood groups of the ABO and RhD systems, including cancer of the tongue, monocytic leukemia, cervical cancer, osteoarthrosis, asthma, and HIV- and hepatitis B infection.. We found marginal evidence of associations between the blood groups and the age at first diagnosis.
Funding:; Novo Nordisk Foundation and the Innovation Fund Denmark.
Data availability
Anonymized patient data was used in this study. Due to national and EU regulations, the data cannot be shared with the wider research community. However, data can be accessed upon relevant application to the Danish authorities. The Danish Patient Safety Authority and the Danish Health Data Authority have permitted the use of the data in this study; whilst currently, the appropriate authority for journal data use in research is the regional committee ("Regionsråd"). The statistical summary data used to create the tables and graphs are available as Supplementary Data 1 and Supplementary Data 2. The analysis code is publicly available through www.github.com/peterbruun/blood_type_study.
Article and author information
Author details
Funding
Novo Nordisk Fonden (NNF14CC0001)
- Søren Brunak
Novo Nordisk Fonden (NNF17OC0027594)
- Søren Brunak
Innovation Fund (5153-00002B)
- Søren Brunak
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: This is a register-based study and informed consent for such studies is waived by the Danish Data Protection Agency. Data access was approved by the Danish Patient Safety Authority (3-3013-1731), the Danish Data Protection Agency (DT SUND 2016-50 and 2017-57) and the Danish Health Data Authority (FSEID 00003092 and FSEID 00003724).
Copyright
© 2023, Bruun-Rasmussen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,103
- views
-
- 191
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
- Genetics and Genomics
Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.
-
- Epidemiology and Global Health
Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.