Histological E-data registration in rodent brain spaces

  1. Jingyi Guo Fuglstad  Is a corresponding author
  2. Pearl Saldanha
  3. Jacopo Paglia
  4. Jonathan R Whitlock  Is a corresponding author
  1. Norwegian University of Science and Technology, Norway

Abstract

Recording technologies for rodents have seen huge advances in the last decade, allowing users to sample thousands of neurons simultaneously from multiple brain regions. This has prompted the need for digital tool kits to aid in curating anatomical data, however, existing tools either provide limited functionalities or require users to be proficient in coding to use them. To address this we created HERBS (Histological E-data Registration in rodent Brain Spaces), a comprehensive new tool for rodent users that offers a broad range of functionalities through a user-friendly graphical user interface. Prior to experiments, HERBS can be used to plan coordinates for implanting electrodes, targeting viral injections or tracers. After experiments, users can register recording electrode locations (e.g. Neuropixels, tetrodes), viral expression or other anatomical features, and visualize the results in 2D or 3D. Additionally, HERBS can delineate labeling from multiple injections across tissue sections and obtain individual cell counts.Regional delineations in HERBS are based either on annotated 3D volumes from the Waxholm Space Atlas of the Sprague Dawley Rat Brain or the Allen Mouse Brain Atlas, though HERBS can work with compatible volume atlases from any species users wish to install. HERBS allows users to scroll through the digital brain atlases and provides custom-angle slice cuts through the volumes, and supports free-transformation of tissue sections to atlas slices. Furthermore, HERBS allows users to reconstruct a 3D brain mesh with tissue from individual animals. HERBS is a multi-platform open-source Python package that is available on PyPI and GitHub, and is compatible with Windows, macOS and Linux operating systems.

Data availability

The software described in this manuscript is an open-source software written completely in Python 3.8.HERBS is fully supported by Windows, macOS and Linux. Source code, HERBS Cookbook and documentation are available on the Whitlock group Github page: https://github.com/Whitlock-Group/HERBS .The Waxholm Space rat brain atlas files can be found here from the NITRC website: https://www.nitrc.org/projects/whs-sd-atlas.The Allen Mouse Brain Atlas software and wiki are freely available at: https://github.com/cortex-lab/allenCCF.

Article and author information

Author details

  1. Jingyi Guo Fuglstad

    Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
    For correspondence
    jingyi.guo@ntnu.no
    Competing interests
    The authors declare that no competing interests exist.
  2. Pearl Saldanha

    Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6749-8240
  3. Jacopo Paglia

    Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Jonathan R Whitlock

    Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
    For correspondence
    jonathan.whitlock@ntnu.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2642-8737

Funding

Norges Forskningsråd (300709)

  • Jonathan R Whitlock

Norges Forskningsråd (223262)

  • Jonathan R Whitlock

Norges Forskningsråd (197467)

  • Jonathan R Whitlock

Kavli Foundation

  • Jonathan R Whitlock

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with the Norwegian Animal Welfare Act and the European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes. All procedures were approved by the Norwegian Food Safety Authority (Mattilsynet; protocol IDs 27175 and 25094). All tissue for in-house testing came from adult (>15wk) Long-Evans hooded rats. Detailed steps of the surgical preparation and post-operative care are described in Mimica et al. 2018 (doi:10.1126/science.aau2013).

Copyright

© 2023, Fuglstad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,773
    views
  • 244
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jingyi Guo Fuglstad
  2. Pearl Saldanha
  3. Jacopo Paglia
  4. Jonathan R Whitlock
(2023)
Histological E-data registration in rodent brain spaces
eLife 12:e83496.
https://doi.org/10.7554/eLife.83496

Share this article

https://doi.org/10.7554/eLife.83496

Further reading

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.