Large-scale electrophysiology and deep learning reveal distorted neural signal dynamics after hearing loss

  1. Shievanie Sabesan
  2. Andreas Fragner
  3. Ciaran Bench
  4. Fotios Drakopoulos
  5. Nicholas A Lesica  Is a corresponding author
  1. University College London, United Kingdom
  2. Perceptual Technologies Ltd, United Kingdom

Abstract

Listeners with hearing loss often struggle to understand speech in noise, even with a hearing aid. To better understand the auditory processing deficits that underlie this problem, we made large-scale brain recordings from gerbils, a common animal model for human hearing, while presenting a large database of speech and noise sounds. We first used manifold learning to identify the neural subspace in which speech is encoded and found that it is low-dimensional and that the dynamics within it are profoundly distorted by hearing loss. We then trained a deep neural network (DNN) to replicate the neural coding of speech with and without hearing loss and analyzed the underlying network dynamics. We found that hearing loss primarily impacts spectral processing, creating nonlinear distortions in cross-frequency interactions that result in a hypersensitivity to background noise that persists even after amplification with a hearing aid. Our results identify a new focus for efforts to design improved hearing aids and demonstrate the power of DNNs as a tool for the study of central brain structures.

Data availability

The metadata, ABR recordings, and a subset of the IC recordings analyzed in this study are available on figshare (DOI:10.6084/m9.figshare.845654). We have made only a subset of the IC recordings available because they are also being used for commercial purposes. These purposes (to develop improved assistive listening technologies) are distinct from the purpose for which the recordings are used in this manuscript (to better understand the fundamentals of hearing loss). Researchers seeking access to the full set of neural recordings for research purposes should contact the corresponding author via e-mail to set up a material transfer agreement. The custom code used for training the deep neural network models for this study is available at github.com/nicklesica/dnn.

The following data sets were generated

Article and author information

Author details

  1. Shievanie Sabesan

    Ear Institute, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Andreas Fragner

    Perceptual Technologies Ltd, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Ciaran Bench

    Ear Institute, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Fotios Drakopoulos

    Ear Institute, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Nicholas A Lesica

    Ear Institute, University College London, London, United Kingdom
    For correspondence
    n.lesica@ucl.ac.uk
    Competing interests
    Nicholas A Lesica, is a co-founder of Perceptual Technologies.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5238-4462

Funding

Wellcome Trust (200942/Z/16/Z)

  • Shievanie Sabesan
  • Nicholas A Lesica

Engineering and Physical Sciences Research Council (EP/W004275/1)

  • Ciaran Bench
  • Fotios Drakopoulos
  • Nicholas A Lesica

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols were approved by the UK Home Office (PPL P56840C21). Every effort was made to minimize suffering.

Copyright

© 2023, Sabesan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 910
    views
  • 140
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shievanie Sabesan
  2. Andreas Fragner
  3. Ciaran Bench
  4. Fotios Drakopoulos
  5. Nicholas A Lesica
(2023)
Large-scale electrophysiology and deep learning reveal distorted neural signal dynamics after hearing loss
eLife 12:e85108.
https://doi.org/10.7554/eLife.85108

Share this article

https://doi.org/10.7554/eLife.85108

Further reading

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.