The push-pull intercrop Desmodium does not repel, but intercepts and kills pests

  1. Anna L Erdei
  2. Aneth B David
  3. Eleni C Savvidou
  4. Vaida Džemedžionaitė
  5. Advaith Chakravarthy
  6. Béla P Molnár
  7. Teun Dekker  Is a corresponding author
  1. Swedish University of Agricultural Sciences, Sweden
  2. University of Dar es Salaam, Sweden
  3. University of Thessaly, Greece
  4. Plant Protection Institute, Hungary

Abstract

Over two decades ago, an intercropping strategy was developed that received critical acclaim for synergizing food security with ecosystem resilience in smallholder farming. The push-pull strategy reportedly suppresses lepidopteran pests in maize through a combination of a repellent intercrop (push), commonly Desmodium spp., and an attractive, border crop (pull). Key in the system is the intercrop's constitutive release of volatile terpenoids that repel herbivores. However, the earlier described volatiles were not detectable in the headspace of Desmodium, and only minimally upon herbivory. This was independent of soil type, microbiome composition, and whether collections were made in the laboratory or in the field. Further, in oviposition choice tests in a wind tunnel, maize with or without an odor background of Desmodium was equally attractive for the invasive pest Spodoptera frugiperda. In search of an alternative mechanism, we found that neonate larvae strongly preferred Desmodium over maize. However, their development stagnated and no larva survived. In addition, older larvae were frequently seen impaled and immobilized by the dense network of silica-fortified, non-glandular trichomes. Thus, our data suggest that Desmodium may act through intercepting and decimating dispersing larval offspring rather than adult deterrence. As a hallmark of sustainable pest control, maize-Desmodium push-pull intercropping has inspired countless efforts to emulate stimulo-deterrent diversion in other cropping systems. However, detailed knowledge of the actual mechanisms is required to rationally improve the strategy, and translate the concept to other cropping systems.

Data availability

https://figshare.com/articles/dataset/The_push-pull_intercrop_Desmodium_does_not_repel_but_intercepts_and_kills_pest/19297730

The following data sets were generated

Article and author information

Author details

  1. Anna L Erdei

    Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Aneth B David

    Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Eleni C Savvidou

    Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
    Competing interests
    The authors declare that no competing interests exist.
  4. Vaida Džemedžionaitė

    Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Advaith Chakravarthy

    Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Béla P Molnár

    Department of Chemical Ecology, Plant Protection Institute, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  7. Teun Dekker

    Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
    For correspondence
    teun.dekker@slu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5395-6602

Funding

No external funding was received for this work.

Copyright

© 2024, Erdei et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,049
    views
  • 239
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna L Erdei
  2. Aneth B David
  3. Eleni C Savvidou
  4. Vaida Džemedžionaitė
  5. Advaith Chakravarthy
  6. Béla P Molnár
  7. Teun Dekker
(2024)
The push-pull intercrop Desmodium does not repel, but intercepts and kills pests
eLife 13:e88695.
https://doi.org/10.7554/eLife.88695

Share this article

https://doi.org/10.7554/eLife.88695

Further reading

    1. Ecology
    Ming-Qiang Wang, Shi-Kun Guo ... Chao-Dong Zhu
    Research Article

    Environmental factors can influence ecological networks, but these effects are poorly understood in the realm of the phylogeny of host-parasitoid interactions. Especially, we lack a comprehensive understanding of the ways that biotic factors, including plant species richness, overall community phylogenetic and functional composition of consumers, and abiotic factors such as microclimate, determine host-parasitoid network structure and host-parasitoid community dynamics. To address this, we leveraged a 5-year dataset of trap-nesting bees and wasps and their parasitoids collected in a highly controlled, large-scale subtropical tree biodiversity experiment. We tested for effects of tree species richness, tree phylogenetic, and functional diversity, and species and phylogenetic composition on species and phylogenetic diversity of both host and parasitoid communities and the composition of their interaction networks. We show that multiple components of tree diversity and canopy cover impacted both, species and phylogenetic composition of hosts and parasitoids. Generally, phylogenetic associations between hosts and parasitoids reflected nonrandomly structured interactions between phylogenetic trees of hosts and parasitoids. Further, host-parasitoid network structure was influenced by tree species richness, tree phylogenetic diversity, and canopy cover. Our study indicates that the composition of higher trophic levels and corresponding interaction networks are determined by plant diversity and canopy cover, especially via trophic links in species-rich ecosystems.

    1. Ecology
    Itai Bloch, David Troupin ... Nir Sapir
    Research Article

    Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts (Apus affinis) in response to insect movements over Israel’s Hula Valley. Insect movement traffic rate (MoTR) substantially varied across days, strongly influencing swift movement. On days with high MoTR, swifts exhibited reduced flight distance, increased colony visit rate, and earlier arrivals at the breeding colony, reflecting a dynamic response to prey availability. However, no significant effects were observed in total foraging duration, flight speed, or daily route length. Notably, as insect abundance increased, inter-individual distances decreased. These findings suggest that Little Swifts optimize their foraging behavior in relation to aerial insect abundance, likely influencing reproductive success and population dynamics. The integration of radar technology and biotelemetry systems provides a unique perspective on the interactions between aerial insectivores and their prey, contributing to a comprehensive understanding of optimal foraging strategies in diverse environments.