Differential interaction patterns of opioid analgesics with µ opioid receptors correlate with ligand-specific voltage sensitivity

  1. Sina B Kirchhofer
  2. Victor Jun Yu Lim
  3. Sebastian Ernst
  4. Noemi Karsai
  5. Ruland G Julia
  6. Meritxell Canals
  7. Peter Kolb  Is a corresponding author
  8. Moritz Bünemann  Is a corresponding author
  1. Philipp University of Marburg, Germany
  2. University of Nottingham, United Kingdom

Abstract

The µ opioid receptor (MOR) is the key target for analgesia, but the application of opioids is accompanied by several issues. There is a wide range of opioid analgesics, differing in their chemical structure and their properties of receptor activation and subsequent effects. A better understanding of ligand-receptor interactions and the resulting effects is important. Here, we calculated the respective binding poses for several opioids and analyzed interaction fingerprints between ligand and receptor. We further corroborated the interactions experimentally by cellular assays. As MOR was observed to display ligand-induced modulation of activity due to changes in membrane potential, we further analyzed the effects of voltage sensitivity on this receptor. Combining in silico and in vitro approaches, we defined discriminating interaction patterns responsible for ligand-specific voltage sensitivity and present new insights into their specific effects on activation of the MOR.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1, 3, 4, 5, 6.

Article and author information

Author details

  1. Sina B Kirchhofer

    Department of Pharmacology and Clinical Pharmacy, Philipp University of Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6285-9054
  2. Victor Jun Yu Lim

    Department of Pharmaceutical Chemistry, Philipp University of Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sebastian Ernst

    Department of Pharmacology and Clinical Pharmacy, Philipp University of Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Noemi Karsai

    Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0009-0000-3948-4071
  5. Ruland G Julia

    Department of Pharmacology and Clinical Pharmacy, Philipp University of Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Meritxell Canals

    Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter Kolb

    Department of Pharmaceutical Chemistry, Philipp University of Marburg, Marburg, Germany
    For correspondence
    peter.kolb@uni-marburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4089-614X
  8. Moritz Bünemann

    Department of Pharmacology and Clinical Pharmacy, Philipp University of Marburg, Marburg, Germany
    For correspondence
    Moritz.buenemann@staff.uni-marburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2259-4378

Funding

European Commission (H2020-MSCA- 860229)

  • Meritxell Canals

United Kingdom Academy of Medical Siences Proffessorship

  • Meritxell Canals

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Kirchhofer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 868
    views
  • 214
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sina B Kirchhofer
  2. Victor Jun Yu Lim
  3. Sebastian Ernst
  4. Noemi Karsai
  5. Ruland G Julia
  6. Meritxell Canals
  7. Peter Kolb
  8. Moritz Bünemann
(2023)
Differential interaction patterns of opioid analgesics with µ opioid receptors correlate with ligand-specific voltage sensitivity
eLife 12:e91291.
https://doi.org/10.7554/eLife.91291

Share this article

https://doi.org/10.7554/eLife.91291

Further reading

    1. Neuroscience
    Gáspár Oláh, Rajmund Lákovics ... Gábor Tamás
    Research Article

    Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.