Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAnna SchapiroUniversity of Pennsylvania, Philadelphia, United States of America
- Senior EditorMichael FrankBrown University, Providence, United States of America
Reviewer #1 (Public Review):
Summary:
This paper investigates the effects of the explicit recognition of statistical structure and sleep consolidation on the transfer of learned structure to novel stimuli. The results show a striking dissociation in transfer ability between explicit and implicit learning of structure, finding that only explicit learners transfer structure immediately. Implicit learners, on the other hand, show an intriguing immediate structural interference effect (better learning of novel structure) followed by successful transfer only after a period of sleep.
Strengths:
This paper is very well written and motivated, and the data are presented clearly with a logical flow. There are several replications and control experiments and analyses that make the pattern of results very compelling. The results are novel and intriguing, providing important constraints on theories of consolidation. The discussion of relevant literature is thorough. In summary, this work makes an exciting and important contribution to the literature.
Weaknesses:
There have been several recent papers that have identified issues with alternative forced choice (AFC) tests as a method of assessing statistical learning (e.g. Isbilen et al. 2020, Cognitive Science). A key argument is that while statistical learning is typically implicit, AFC involves explicit deliberation and therefore does not match the learning process well. The use of AFC in this study thus leaves open the question of whether the AFC measure benefits the explicit learners in particular, given the congruence between knowledge and testing format, and whether, more generally, the results would have been different had the method of assessing generalization been implicit. Prior work has shown that explicit and implicit measures of statistical learning do not always produce the same results (eg. Kiai & Melloni, 2021, bioRxiv; Liu et al. 2023, Cognition).
Given that the explicit/implicit classification was based on an exit survey, it is unclear when participants who are labeled "explicit" gained that explicit knowledge. This might have occurred during or after either of the sessions, which could impact the interpretation of the effects.
Reviewer #2 (Public Review):
Summary:
Sleep has not only been shown to support the strengthening of memory traces but also their transformation. A special form of such transformation is the abstraction of general rules from the presentation of individual exemplars. The current work used large online experiments with hundreds of participants to shed further light on this question. In the training phase, participants saw composite items (scenes) that were made up of pairs of spatially coupled (i.e., they were next to each other) abstract shapes. In the initial training, they saw scenes made up of six horizontally structured pairs, and in the second training phase, which took place after a retention phase (2 min awake, 12 h incl. sleep, 12 h only wake, 24 h incl. sleep), they saw pairs that were horizontally or vertically coupled. After the second training phase, a two-alternatives-forced-choice (2-AFC) paradigm, where participants had to identify true pairs versus randomly assembled foils, was used to measure the performance of all pairs. Finally, participants were asked five questions to identify, if they had insight into the pair structure, and post-hoc groups were assigned based on this. Mainly the authors find that participants in the 2-minute retention experiment without explicit knowledge of the task structure were at chance level performance for the same structure in the second training phase, but had above chance performance for the vertical structure. The opposite was true for both sleep conditions. In the 12 h wake condition these participants showed no ability to discriminate the pairs from the second training phase at all.
Strengths:
All in all, the study was performed to a high standard and the sample size in the implicit condition was large enough to draw robust conclusions. The authors make several important statistical comparisons and also report an interesting resampling approach. There is also a lot of supplemental data regarding robustness.
Weaknesses:
My main concern regards the small sample size in the explicit group and the lack of experimental control.
Reviewer #3 (Public Review):
In this project, Garber and Fiser examined how the structure of incidentally learned regularities influences subsequent learning of regularities, that either have the same structure or a different one. Over a series of six online experiments, it was found that the structure (spatial arrangement) of the first set of regularities affected the learning of the second set, indicating that it has indeed been abstracted away from the specific items that have been learned. The effect was found to depend on the explicitness of the original learning: Participants who noticed regularities in the stimuli were better at learning subsequent regularities of the same structure than of a different one. On the other hand, participants whose learning was only implicit had an opposite pattern: they were better in learning regularities of a novel structure than of the same one. This opposite effect was reversed and came to match the pattern of the explicit group when an overnight sleep separated the first and second learning phases, suggesting that the abstraction and transfer in the implicit case were aided by memory consolidation.
These results are interesting and can bridge several open gaps between different areas of study in learning and memory. However, I feel that a few issues in the manuscript need addressing for the results to be completely convincing:
(1) The reported studies have a wonderful and complex design. The complexity is warranted, as it aims to address several questions at once, and the data is robust enough to support such an endeavor. However, this work would benefit from more statistical rigor. First, the authors base their results on multiple t-tests conducted on different variables in the data. Analysis of a complex design should begin with a large model incorporating all variables of interest. Only then, significant findings would warrant further follow-up investigation into simple effects (e.g., first find an interaction effect between group and novelty, and only then dive into what drives that interaction). Furthermore, regardless of the statistical strategy used, a correction for multiple comparisons is needed here. Otherwise, it is hard to be convinced that none of these effects are spurious. Last, there is considerable variation in sample size between experiments. As the authors have conducted a power analysis, it would be good to report that information per each experiment, so readers know what power to expect in each.
(2) Some methodological details in this manuscript I found murky, which makes it hard to interpret results. For example, the secondary results section of Exp1 (under Methods) states that phase 2 foils for one structure were made of items of the other structure. This is an important detail, as it may make testing in phase 2 easier, and tie learning of one structure to the other. As a result, the authors infer a "consistency effect", and only 8 test trials are said to be used in all subsequent analyses of all experiments. I found the details, interpretation, and decision in this paragraph to lack sufficient detail, justification, and visibility. I could not find either of these important design and analysis decisions reflected in the main text of the manuscript or in the design figure. I would also expect to see a report of results when using all the data as originally planned. Similarly, the matched sample analysis is a great addition, but details are missing. Most importantly, it was not clear to me why the same matching method should be used for all experiments instead of choosing the best matching subgroup (regardless of how it was arrived at), and why the nearest-neighbor method with replacement was chosen, as it is not evident from the numbers in Supplementary Table 1 that it was indeed the best-performing method overall. Such omissions hinder interpreting the work.
(3) To me, the most surprising result in this work relates to the performance of implicit participants when phase 2 followed phase 1 almost immediately (Experiment 1 and Supplementary Experiment 1). These participants had a deficit in learning the same structure but a benefit in learning the novel one. The first part is easier to reconcile, as primacy effects have been reported in statistical learning literature, and so new learning in this second phase could be expected to be worse. However, a simultaneous benefit in learning pairs of a new structure ("structural novelty effect") is harder to explain, and I could not find a satisfactory explanation in the manuscript. After possible design and statistical confounds (my previous comments) are ruled out, a deeper treatment of this finding would be warranted, both empirically (e.g., do explicit participants collapse across Experiments 1 and Supplementary Experiment 1 show the same effect?) and theoretically (e.g., why would this phenomenon be unique only to implicit learning, and why would it dissipate after a long awake break?).