Attentional modulation of secondary somatosensory and visual thalamus of mice

  1. Department of Neuroscience, Columbia University, New York, NY 10027 USA
  2. Department of Physiology, Anatomy, & Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Alexander Groh
    Heidelberg University, Germany
  • Senior Editor
    Joshua Gold
    University of Pennsylvania, Philadelphia, United States of America

Reviewer #1 (Public Review):

Petty and Bruno investigate how response characteristics in the higher-order thalamic nuclei POm (typically somatosensory) and LP (typically visual) change when a stimulus (whisker air puff or visual drifting grating) of one or the other modality is conditioned to a reward. Using a two-step training procedure, they developed an elegant paradigm, where the distractor stimulus is completely uninformative about the reward, which is reflected in the licking behavior of trained mice. While the animals seem to take on to the tactile stimulus more readily, they can also associate the reward with the visual stimulus, ignoring tactile stimuli. In trained mice, the authors recorded single-unit responses in both POm and LP while presenting the same stimuli. The authors first focused on POm recordings, finding that in animals with tactile conditioning POm units specifically responded to the air puff stimulus but not the visual grating. Unexpectedly, in visually conditioned animals, POm units also responded to the visual grating, suggesting that the responses are not modality-specific but more related to behavioral relevance. These effects seem not not be homogeneously distributed across POm, whereas lateral units maintain tactile specificity and medial units respond more flexibly. The authors further ask if the unexpected cross-modal responses might result from behavioral activity signatures. By regressing behavior-coupled activity out of the responses, they show that late activity indeed can be related to whisking, licking, and pupil size measures. However, cross-modal short latency responses are not clearly related to animal behavior. Finally, LP neurons also seem to change their modality-specificity dependent on conditioning, whereas tactile responses are attenuated in LP if the animal is conditioned to visual stimuli.

The authors make a compelling case that POm neurons are less modality-specific than typically assumed. The training paradigm, employed methods, and analyses are mostly to the point, well supporting the conclusions. The findings importantly widen our understanding of higher-order thalamus processing features with the flexibility to encode multiple modalities and behavioral relevance. The results raise many important questions on the brain-wide representation of conditioned stimuli. E.g. how specific are the responses to the conditioned stimuli? Are thalamic cross-modal neurons recruited for the specific conditioned stimulus or do their responses reflect a more global shift of attention from one modality to another?

To elaborate on higher-order thalamic activity in relationship to conditioned behavior, a trial-by-trial analysis would be very useful. Is neuronal activity predictive of licking and at which relative timing? Furthermore, I wonder why the (in my mind) major and from the data obvious take-away, "POm neurons respond more strongly to visual stimuli if visually conditioned", is not directly tested in the summary statistics in Figure 3h.

The remaining early visual responses in POm in visually conditioned mice after removing behavior-linked activity are very convincing (Figure 5d). It would help, however, to see a representation of this on a single-neuron basis side-by-side. Are individual neurons just coupled to behavior while others are independent, or is behaviorally coupled activity a homogeneous effect on all neurons on top of sensory activity?

The conclusions on flexible response characteristics in LP in general are less strongly supported than those in POm. First, the differentiation between POm and LP relies heavily on the histological alignment of labeled probe depth and recording channel, possibly allowing for wrong assignment. furthermore, it seems surprising, but is not discussed, that putative LP neurons have such strong responses to the air puff stimuli, in both conditioning cases. In tactile conditioning, LP air puff responses seem to be even faster and stronger than POm. In visual conditioning, drifting grating responses paradoxically seem to be later than in tactile conditioning (Fig S2e). These differences in response changes between POm and LP should be discussed in more detail and statements of "similar phenomena" in POm and LP (abstract) should be qualified.

Reviewer #2 (Public Review):

Summary

This manuscript by Petty and Bruno delves into the still poorly understood role of higher-order thalamic nuclei in the encoding of sensory information by examining the activity in the Pom and LP cells in mice performing an associative learning task. They developed an elegant paradigm in which they conditioned head-fixed mice to attend to a stimulus of one sensory modality (visual or tactile) and ignore a second stimulus of the other modality. They recorded simultaneously from POm and LP, using 64-channel electrode arrays, to reveal the context-dependency of the firing activity of cells in higher-order thalamic nuclei. They concluded that behavioral training reshapes activity in these secondary thalamic nuclei. I have no major concerns with the manuscript's conclusions, but some important methodological details are lacking and I feel the manuscript could be improved with the following revisions.

Strengths

The authors developed an original and elegant paradigm in which they conditioned head-fixed mice to attend to a stimulus of one sensory modality, either visual or tactile, and ignore a second stimulus of the other modality. As a tactile stimulus, they applied gentle air puffs on the distal part of the vibrissae, ensuring that the stimulus was innocuous and therefore none aversive which is crucial in their study.

It is commonly viewed that the first-order thalamus performs filtering and re-encoding of the sensory flow; in contrast, the computations taking place in high-order nuclei are poorly understood. They may contribute to cognitive functions. By integrating top-down control, high-order nuclei may participate in generating updated models of the environment based on sensory activity; how this can take place is a key question that Petty and Bruno addressed in the present study.

Weaknesses

(1) Overall, methods, results, and discussion, involving sensory responses, especially for the Pom, are confusing. I have the feeling that throughout the manuscript, the authors are dealing with the sensory and non-sensory aspects of the modulation of the firing activity in the Pom and LP, without a clear definition of what they examined. Making subsections in the results, or a better naming of what is analyzed could convey the authors' message in a clearer way, e.g., baseline, stim-on, reward.

In line #502 in Methods, the authors defined "Sensory Responses. We examined each cell's putative sensory response by comparing its firing rate during a "stimulus period" to its baseline firing rate. We first excluded overlapping stimuli, defined as any stimulus occurring within 6 seconds of a stimulus of a different type. We then counted the number of spikes that occurred within 1 second prior to the onset of each stimulus (baseline period) and within one second of the stimulus onset (stimulus period). The period within +/-50ms of the stimulus was considered ambiguous and excluded from analysis."

Considering that the responses to whisker deflection, while weak and delayed, were shown to occur, when present, before 50 ms in the Pom (Diamond et al., 1992), it is not clear what the authors mean and consider as "Sensory Responses"?

Precise wording may help to clarify the message. For instance, line #134: "Of cells from tactilely conditioned mice, 175 (50.4%) significantly responded to the air puff, as defined by having a firing rate significantly different from baseline within one second from air puff onset (Figure 3d, bottom)", could be written "significantly responded to the air puff" should be written "significantly increased (or modified if some decreased) their firing rate within one second after the air puff onset (baseline: ...)". This will avoid any confusion with the sensory responses per se.

(2) To extend the previous concern, the latency of the modulation of the firing rate of the Pom cells for each modality and each conditioning may be an issue. This latency, given in Figure S2, is rather long, i.e. particularly late latencies for the whisker system, which is completely in favor of non-sensory "responses" per se and the authors' hypothesis that sensory-, arousal-, and movement-evoked activity in Pom are shaped by associative learning. Latency is a key point in this study.

Therefore,
- latencies should be given in the main text, and Figure S2 could be considered for a main figure, at least panels c, d, and e, could be part of Figure 3.

- the Figure S2b points out rather short latency responses to the air puff, at least in some cells, in addition to late ones. The manuscript would highly benefit from an analysis of both early and late latency components of the "responses" to air puffs and drafting grating in both conditions. This analysis may definitely help to clarify the authors' message. Since the authors performed unit recordings, these data are accessible.

- it would be highly instructive to examine the latency of the modulation of Pom cells firing rate in parallel with the onset of each behavior, i.e. modification of pupil radius, whisking amplitude, lick rate (Figures 1e, g and 3a, b). The Figure 1 does not provide the latency of the licks in conditioned mice.

- the authors mention in the discussion low-latency responses, e.g., line #299: "In both tactilely and visually conditioned mice, movement could not explain the increased firing rate at air puff onset. These low-latency responses across conditioning groups is likely due in part to "true" sensory responses driven by S1 and SpVi."; line #306: "Like POm, LP displayed varied stimulus-evoked activity that was heavily dependent on conditioning. LP responded to the air puff robustly and with low latency, despite lacking direct somatosensory inputs."
But which low-latency responses do the authors refer to? Again, this points out that a robust analysis of these latencies is missing in the manuscript but would be helpful to conclude.

(3) Anatomical locations of recordings in the dorsal part of the thalamus. Line #122 "Our recordings covered most of the volume of POm but were clustered primarily in the anterior and medial portions of LP (Figure 2d-f). Cells that were within 50 µm of a region border were excluded from analysis."
How did the authors distinguish the anterior boundary of the LP with the LD nucleus just more anterior to the LP, another higher-order nucleus, where whisker-responsive cells have been isolated (Bezdudnaya and Keller, 2008)?

(4) The mention in the Methods about the approval by an ethics committee is missing.
All the surgery (line #381), i.e., for the implant, the craniotomy, as well as the perfusion, are performed under isoflurane. But isoflurane induces narcosis only and not proper anesthesia. The mention of the use of analgesia is missing.

Reviewer #3 (Public Review):

Petty and Bruno ask whether activity in secondary thalamic nuclei depends on the behavioral relevance of stimulus modality. They recorded from POm and LP, but the weight of the paper is skewed toward POm. They use two cohorts of mice (N=11 and 12), recorded in both nuclei using multi-electrode arrays, while being trained to lick to either a tactile stimulus (air puff against whiskers, first cohort) or a visual stimulus (drifting grating, second cohort), and ignore the respective other. They find that both nuclei, while primarily responsive to their 'home' modality, are more responsive to the relevant modality (i.e. the modality predicting reward).

Strengths:

The paper asks an important question, it is timely and is very well executed. The behavioral method using a delayed lick index (excluding impulsive responses) is well worked out. Electrophysiology methods are state-of-the-art with information about spike quality in Figure S1. The main result is novel and important, convincingly conveying the point that encoding of secondary thalamic nuclei is flexible and clearly includes aspects of the behavioral relevance of a stimulus. The paper explores the mapping of responses within POm, pointing to a complex functional structure, something that has been reported/suggested in earlier studies.

Weaknesses:

Coding: It does not become clear to which aspect of the task POm/LP is responding. There is a motor-related response (whisking, licking, pupil), which, however, after regressing it out leaves a remaining response that the authors speculate could be sensory.

Learning: The paper talks a lot about 'learning', although it is only indirectly addressed. The authors use two differently (over-)trained mice cohorts rather than studying e.g. a rule switch in one and the same mouse, which would allow us to directly assess whether it is the same neurons that undergo rule-dependent encoding.

Mapping: The authors treat and interpret the two nuclei very much in the same vein, although there are clear differences. I would think these differences are mentioned in passing but could be discussed in more depth. Mapping using responses on electrode tracks is done in POm but not LP.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation