Phase-amplitude coupling supports phase coding in human ECoG

  1. Andrew J Watrous  Is a corresponding author
  2. Lorena Deuker
  3. Juergen Fell
  4. Nikolai Axmacher
  1. University of Bonn, Germany
  2. German Center for Neurodegenerative Diseases, Germany

Abstract

Prior studies have shown that high-frequency activity (HFA) is modulated by the phase of low-frequency activity. This phenomenon of phase-amplitude coupling (PAC) is often interpreted as reflecting phase coding of neural representations, although evidence for this link is still lacking in humans. Here, we show that PAC indeed supports phase-dependent stimulus representations for categories. Six patients with medication-resistant epilepsy viewed images of faces, tools, houses, and scenes during simultaneous acquisition of intracranial recordings. Analyzing 167 electrodes, we observed PAC at 43% of electrodes. Further inspection of PAC revealed that category specific HFA modulations occurred at different phases and frequencies of the underlying low-frequency rhythm, permitting decoding of categorical information using the phase at which HFA events occurred. These results provide evidence for categorical phase-coded neural representations and are the first to show that PAC coincides with phase-dependent coding in the human brain.

Article and author information

Author details

  1. Andrew J Watrous

    Department of Epileptology, University of Bonn, Bonn, Germany
    For correspondence
    ajw5xc@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Lorena Deuker

    Department of Epileptology, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Juergen Fell

    Department of Epileptology, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Nikolai Axmacher

    German Center for Neurodegenerative Diseases, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: The study was conducted according to the latest version of the Declaration of Helsinki and approved by the local ethics committee, and all patients provided written informed consent.

Copyright

© 2015, Watrous et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew J Watrous
  2. Lorena Deuker
  3. Juergen Fell
  4. Nikolai Axmacher
(2015)
Phase-amplitude coupling supports phase coding in human ECoG
eLife 4:e07886.
https://doi.org/10.7554/eLife.07886

Share this article

https://doi.org/10.7554/eLife.07886

Further reading

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.