Mapping residual transmission for malaria elimination

  1. Robert C Reiner  Is a corresponding author
  2. Arnaud Le Manach
  3. Simon Kunene
  4. Nyasatu Ntshalintshali
  5. Michelle S Hsiang
  6. T Alex Perkins
  7. Bryan Greenhouse
  8. Andrew J Tatem
  9. Justin M Cohen
  10. David L Smith
  1. National Institutes of Health, United States
  2. Clinton Health Access Initiative, United States
  3. National Malaria Control Program, Swaziland
  4. University of Texas Southwestern Medical Center, United States
  5. University of California, San Francisco, United States

Abstract

Eliminating malaria from a defined region involves draining the endemic parasite reservoir and minimizing local malaria transmission around imported malaria infections1. In the last phases of malaria elimination, as universal interventions reap diminishing marginal returns, national resources must become increasingly devoted to identifying where residual transmission is occurring. The needs for accurate measures of progress and practical advice about how to allocate scarce resources require new analytical methods to quantify fine-grained heterogeneity in malaria risk. Using routine national surveillance data from Swaziland (a sub-Saharan country on the verge of elimination), we estimated individual reproductive numbers. Fine-grained maps of reproductive numbers and local malaria importation rates were combined to show `malariogenic potential,' a first for malaria elimination. As countries approach elimination, these individual-based measures of transmission risk provide meaningful metrics for planning programmatic responses and prioritizing areas where interventions will contribute most to malaria elimination.

Article and author information

Author details

  1. Robert C Reiner

    Fogarty International Center, National Institutes of Health, Bethesda, United States
    For correspondence
    rcreiner@indiana.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Arnaud Le Manach

    Clinton Health Access Initiative, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Simon Kunene

    National Malaria Control Program, Manzini, Swaziland
    Competing interests
    The authors declare that no competing interests exist.
  4. Nyasatu Ntshalintshali

    Clinton Health Access Initiative, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michelle S Hsiang

    Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. T Alex Perkins

    Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bryan Greenhouse

    Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrew J Tatem

    Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Justin M Cohen

    Clinton Health Access Initiative, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. David L Smith

    Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Reiner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,964
    views
  • 713
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robert C Reiner
  2. Arnaud Le Manach
  3. Simon Kunene
  4. Nyasatu Ntshalintshali
  5. Michelle S Hsiang
  6. T Alex Perkins
  7. Bryan Greenhouse
  8. Andrew J Tatem
  9. Justin M Cohen
  10. David L Smith
(2015)
Mapping residual transmission for malaria elimination
eLife 4:e09520.
https://doi.org/10.7554/eLife.09520

Share this article

https://doi.org/10.7554/eLife.09520

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Ole Bæk, Tik Muk ... Duc Ninh Nguyen
    Research Article

    Preterm infants are susceptible to neonatal sepsis, a syndrome of pro-inflammatory activity, organ damage, and altered metabolism following infection. Given the unique metabolic challenges and poor glucose regulatory capacity of preterm infants, their glucose intake during infection may have a high impact on the degree of metabolism dysregulation and organ damage. Using a preterm pig model of neonatal sepsis, we previously showed that a drastic restriction in glucose supply during infection protects against sepsis via suppression of glycolysis-induced inflammation, but results in severe hypoglycemia. Now we explored clinically relevant options for reducing glucose intake to decrease sepsis risk, without causing hypoglycemia and further explore the involvement of the liver in these protective effects. We found that a reduced glucose regime during infection increased survival via reduced pro-inflammatory response, while maintaining normoglycemia. Mechanistically, this intervention enhanced hepatic oxidative phosphorylation and possibly gluconeogenesis, and dampened both circulating and hepatic inflammation. However, switching from a high to a reduced glucose supply after the debut of clinical symptoms did not prevent sepsis, suggesting metabolic conditions at the start of infection are key in driving the outcome. Finally, an early therapy with purified human inter-alpha inhibitor protein, a liver-derived anti-inflammatory protein, partially reversed the effects of low parenteral glucose provision, likely by inhibiting neutrophil functions that mediate pathogen clearance. Our findings suggest a clinically relevant regime of reduced glucose supply for infected preterm infants could prevent or delay the development of sepsis in vulnerable neonates.

    1. Medicine
    2. Microbiology and Infectious Disease
    Kavidha Reddy, Guinevere Q Lee ... Thumbi Ndung'u
    Research Article

    Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are a barrier to cure efforts. Early antiretroviral therapy (ART) enables post-treatment viral control in some cases, but mechanisms remain unclear. We hypothesised that ART initiated before peak viremia impacts HIV-1 subtype C reservoirs. We studied 35 women at high risk of infection from Durban, South Africa, identified with hyperacute HIV by twice-weekly HIV-RNA testing. Participants included 11 starting ART at a median of 456 (297–1203) days post-onset of viremia (DPOV) and 24 at 1 (1–3) DPOV. Peripheral blood mononuclear cells (PBMCs) were used to measured total HIV-1 DNA by droplet digital PCR (ddPCR) and sequence viral reservoir genomes by full-length proviral sequencing (FLIP-seq). ART during hyperacute infection blunted peak viremia (p<0.0001), but contemporaneous total HIV-1 DNA did not differ (p=0.104). Over 1 year, a decline of total HIV-1 DNA was observed in early treated persons (p=0.0004), but not late treated. Among 697 viral genome sequences, the proviral genetic landscape differed between untreated, late treated, and early treated groups. Intact genomes after 1 year were higher in untreated (31%) versus late treated (14%) and early treated (0%). Treatment in both late and early infection caused more rapid decay of intact (13% and 51% per month) versus defective (2% and 35%) viral genomes. However, intact genomes persisted 1 year post chronic treatment but were undetectable with early ART. Early ART also reduced phylogenetic diversity of intact genomes and limited cytotoxic T lymphocyte immune escape variants in the reservoir. Overall, ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding but was associated with rapid intact viral genome decay, reduced genetic complexity, and limited immune escape, which may accelerate reservoir clearance in combination with other interventional strategies.