Auxiliary subunits of the CKAMP family differentially modulate AMPA receptor properties

  1. Paul Farrow
  2. Konstantin Khodosevich
  3. Yechiam Sapir
  4. Anton Schulmann
  5. Muhammad Aslam
  6. Yael Stern-Bach
  7. Hannah Monyer
  8. Jakob von Engelhardt  Is a corresponding author
  1. German Cancer Research Center, Germany
  2. Copenhagen University, Denmark
  3. Institute for Medical Research - Israel-Canada, Israel
  4. Heidelberg University, Germany

Abstract

AMPA receptor (AMPAR) function is modulated by auxiliary subunits. Here, we report on three AMPAR interacting proteins - namely CKAMP39, CKAMP52 and CKAMP59 - that, together with the previously characterized CKAMP44, constitute a novel family of auxiliary subunits distinct from other families of AMPAR interacting proteins. The new members of the CKAMP family display distinct regional and developmental expression profiles in the mouse brain. Notably, despite their structural similarities they exert diverse modulation on AMPAR gating by influencing deactivation, desensitization and recovery from desensitization, as well as glutamate and cyclothiazide potency to AMPARs. This study indicates that AMPAR function is very precisely controlled by the cell-type specific expression of the CKAMP family members.

Article and author information

Author details

  1. Paul Farrow

    Synaptic Signalling and Neurodegeneration, German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Konstantin Khodosevich

    Biotech Research and Innovation Center, Copenhagen University, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Yechiam Sapir

    Department of Biochemistry and Molecular Biology, Institute for Medical Research - Israel-Canada, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Anton Schulmann

    Department of Clinical Neurobiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Muhammad Aslam

    Synaptic Signalling and Neurodegeneration, German Cancer Research Center, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Yael Stern-Bach

    Department of Biochemistry and Molecular Biology, Institute for Medical Research - Israel-Canada, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Hannah Monyer

    Department of Clinical Neurobiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Jakob von Engelhardt

    Synaptic Signalling and Neurodegeneration, German Cancer Research Center, Heidelberg, Germany
    For correspondence
    engelhardt@dzne.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Farrow et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paul Farrow
  2. Konstantin Khodosevich
  3. Yechiam Sapir
  4. Anton Schulmann
  5. Muhammad Aslam
  6. Yael Stern-Bach
  7. Hannah Monyer
  8. Jakob von Engelhardt
(2015)
Auxiliary subunits of the CKAMP family differentially modulate AMPA receptor properties
eLife 4:e09693.
https://doi.org/10.7554/eLife.09693

Share this article

https://doi.org/10.7554/eLife.09693

Further reading

    1. Neuroscience
    Cameron T Ellis, Tristan S Yates ... Nicholas Turk-Browne
    Research Article

    Studying infant minds with movies is a promising way to increase engagement relative to traditional tasks. However, the spatial specificity and functional significance of movie-evoked activity in infants remains unclear. Here, we investigated what movies can reveal about the organization of the infant visual system. We collected fMRI data from 15 awake infants and toddlers aged 5–23 months who attentively watched a movie. The activity evoked by the movie reflected the functional profile of visual areas. Namely, homotopic areas from the two hemispheres responded similarly to the movie, whereas distinct areas responded dissimilarly, especially across dorsal and ventral visual cortex. Moreover, visual maps that typically require time-intensive and complicated retinotopic mapping could be predicted, albeit imprecisely, from movie-evoked activity in both data-driven analyses (i.e. independent component analysis) at the individual level and by using functional alignment into a common low-dimensional embedding to generalize across participants. These results suggest that the infant visual system is already structured to process dynamic, naturalistic information and that fine-grained cortical organization can be discovered from movie data.