Evaluating mesenchymal stem cell therapy for sepsis with preclinical meta-analyses prior to initiating a first-in-human trial

  1. Manoj M Lalu
  2. Katrina J Sullivan
  3. Shirley HJ Mei
  4. David Moher
  5. Alexander Straus
  6. Dean A Fergusson
  7. Duncan J Stewart
  8. Mazen Jazi
  9. Malcolm MacLeod
  10. Brent Winston
  11. John Marshall
  12. Brian Hutton
  13. Keith R Walley
  14. Lauralyn McIntyre  Is a corresponding author
  15. on behalf of the Canadian Critical Care Translational Biology Group
  1. The Ottawa Hospital, Canada
  2. The Ottawa Hospital Research Institute, Canada
  3. The University of Edinburgh, United Kingdom
  4. University of Calgary, Canada
  5. St. Michaels Hospital, The University of Toronto, Canada
  6. University of Ottawa, Canada

Abstract

Evaluation of preclinical evidence prior to initiating early-phase clinical studies has typically been performed by selecting individual studies in a non-systematic process that may introduce bias. Thus, in preparation for a first-in-human trial of mesenchymal stromal cells (MSCs) for septic shock, we applied systematic review methodology to evaluate all published preclinical evidence. We identified 20 controlled comparison experiments (980 animals from 18 publications) of in vivo sepsis models. Meta-analysis demonstrated that MSC treatment of preclinical sepsis significantly reduced mortality (odds ratio 0.27, 95% confidence interval 0.18-0.40, latest timepoint reported for each study) over a range of experimental conditions. Risk of bias was unclear as few studies described elements such as randomization and no studies included an appropriately calculated sample size. Moreover, the presence of publication bias resulted in a ~30% overestimate of effect and threats to validity limit the strength of our conclusions. This novel prospective application of systematic review methodology serves as a template to evaluate preclinical evidence prior to initiating first-in-human clinical studies.

Article and author information

Author details

  1. Manoj M Lalu

    Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0322-382X
  2. Katrina J Sullivan

    Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Shirley HJ Mei

    Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. David Moher

    Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexander Straus

    Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Dean A Fergusson

    Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Duncan J Stewart

    Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9113-8691
  8. Mazen Jazi

    Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Malcolm MacLeod

    Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Brent Winston

    Department of Critical Care Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. John Marshall

    Departments of Surgery and Critical Care Medicine, Keenan Research Centre of the Li KaShing Knowledge Institute, St. Michaels Hospital, The University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Brian Hutton

    Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Keith R Walley

    Department of Medicine, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Lauralyn McIntyre

    Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Canada
    For correspondence
    lmcintyre@ohri.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7421-1407

Funding

National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC/L000970/1)

  • David Moher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Lalu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,261
    views
  • 451
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Manoj M Lalu
  2. Katrina J Sullivan
  3. Shirley HJ Mei
  4. David Moher
  5. Alexander Straus
  6. Dean A Fergusson
  7. Duncan J Stewart
  8. Mazen Jazi
  9. Malcolm MacLeod
  10. Brent Winston
  11. John Marshall
  12. Brian Hutton
  13. Keith R Walley
  14. Lauralyn McIntyre
  15. on behalf of the Canadian Critical Care Translational Biology Group
(2016)
Evaluating mesenchymal stem cell therapy for sepsis with preclinical meta-analyses prior to initiating a first-in-human trial
eLife 5:e17850.
https://doi.org/10.7554/eLife.17850

Share this article

https://doi.org/10.7554/eLife.17850

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Gillian AM Tarr, Linda Chui ... Tim A McAllister
    Research Article

    Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.

    1. Epidemiology and Global Health
    Marina Padilha, Victor Nahuel Keller ... Gilberto Kac
    Research Article

    Background: The role of circulating metabolites on child development is understudied. We investigated associations between children's serum metabolome and early childhood development (ECD).

    Methods: Untargeted metabolomics was performed on serum samples of 5,004 children aged 6-59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019). ECD was assessed using the Survey of Well-being of Young Children's milestones questionnaire. The graded response model was used to estimate developmental age. Developmental quotient (DQ) was calculated as the developmental age divided by chronological age. Partial least square regression selected metabolites with a variable importance projection ≥ 1. The interaction between significant metabolites and the child's age was tested.

    Results: Twenty-eight top-ranked metabolites were included in linear regression models adjusted for the child's nutritional status, diet quality, and infant age. Cresol sulfate (β = -0.07; adjusted-p < 0.001), hippuric acid (β = -0.06; adjusted-p < 0.001), phenylacetylglutamine (β = -0.06; adjusted-p < 0.001), and trimethylamine-N-oxide (β = -0.05; adjusted-p = 0.002) showed inverse associations with DQ. We observed opposite directions in the association of DQ for creatinine (for children aged -1 SD: β = -0.05; p =0.01; +1 SD: β = 0.05; p =0.02) and methylhistidine (-1 SD: β = - 0.04; p =0.04; +1 SD: β = 0.04; p =0.03).

    Conclusion: Serum biomarkers, including dietary and microbial-derived metabolites involved in the gut-brain axis, may potentially be used to track children at risk for developmental delays.

    Funding: Supported by the Brazilian Ministry of Health and the Brazilian National Research Council.