MERS-CoV spillover at the camel-human interface

  1. Gytis Dudas  Is a corresponding author
  2. Luiz Max Carvalho
  3. Andrew Rambaut
  4. Trevor Bedford
  1. Fred Hutchinson Cancer Research Center, United States
  2. University of Edinburgh, United Kingdom

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus from camels causing significant mortality and morbidity in humans in the Arabian Peninsula. The epidemiology of the virus remains poorly understood, and while case-based and seroepidemiological studies have been employed extensively throughout the epidemic, viral sequence data have not been utilised to their full potential. Here we use existing MERS-CoV sequence data to explore its phylodynamics in two of its known major hosts, humans and camels. We employ structured coalescent models to show that long-term MERS-CoV evolution occurs exclusively in camels, whereas humans act as a transient, and ultimately terminal host. By analysing the distribution of human outbreak cluster sizes and zoonotic introduction times we show that human outbreaks in the Arabian peninsula are driven by seasonally varying zoonotic transfer of viruses from camels. Without heretofore unseen evolution of host tropism, MERS-CoV is unlikely to become endemic in humans.

Article and author information

Author details

  1. Gytis Dudas

    Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    gdudas@fredhutch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0227-4158
  2. Luiz Max Carvalho

    Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew Rambaut

    Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Trevor Bedford

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4039-5794

Funding

National Institutes of Health (R35 GM119774-01)

  • Trevor Bedford

Pew Charitable Trusts (Pew Biomedical Scholar)

  • Trevor Bedford

European Commission (278433-PREDEMICS)

  • Andrew Rambaut

Wellcome (206298/Z/17/Z)

  • Andrew Rambaut

Fred Hutchinson Cancer Research Center (Mahan Postdoctoral Fellowship)

  • Gytis Dudas

European Commission (725422-RESERVOIRDOCS)

  • Andrew Rambaut

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Dudas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,728
    views
  • 1,055
    downloads
  • 158
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gytis Dudas
  2. Luiz Max Carvalho
  3. Andrew Rambaut
  4. Trevor Bedford
(2018)
MERS-CoV spillover at the camel-human interface
eLife 7:e31257.
https://doi.org/10.7554/eLife.31257

Share this article

https://doi.org/10.7554/eLife.31257

Further reading

    1. Epidemiology and Global Health
    Riccardo Spott, Mathias W Pletz ... Christian Brandt
    Research Article

    Given the rapid cross-country spread of SARS-CoV-2 and the resulting difficulty in tracking lineage spread, we investigated the potential of combining mobile service data and fine-granular metadata (such as postal codes and genomic data) to advance integrated genomic surveillance of the pandemic in the federal state of Thuringia, Germany. We sequenced over 6500 SARS-CoV-2 Alpha genomes (B.1.1.7) across 7 months within Thuringia while collecting patients’ isolation dates and postal codes. Our dataset is complemented by over 66,000 publicly available German Alpha genomes and mobile service data for Thuringia. We identified the existence and spread of nine persistent mutation variants within the Alpha lineage, seven of which formed separate phylogenetic clusters with different spreading patterns in Thuringia. The remaining two are subclusters. Mobile service data can indicate these clusters’ spread and highlight a potential sampling bias, especially of low-prevalence variants. Thereby, mobile service data can be used either retrospectively to assess surveillance coverage and efficiency from already collected data or to actively guide part of a surveillance sampling process to districts where these variants are expected to emerge. The latter concept was successfully implemented as a proof-of-concept for a mobility-guided sampling strategy in response to the surveillance of Omicron sublineage BQ.1.1. The combination of mobile service data and SARS-CoV-2 surveillance by genome sequencing is a valuable tool for more targeted and responsive surveillance.