Phase-tuned neuronal firing encodes human contextual representations for navigational goals

  1. Andrew J Watrous  Is a corresponding author
  2. Jonathan Miller
  3. Salman E Qasim
  4. Itzhak Fried
  5. Joshua Jacobs
  1. Columbia University, United States
  2. University of California, Los Angeles, United States

Abstract

We previously demonstrated that the phase of oscillations modulates neural activity representing categorical information using human intracranial recordings and high-frequency activity from local field potentials (Watrous et al., 2015b). We extend these findings here using human single-neuron recordings during a navigation task. We identify neurons in the medial temporal lobe with firing-rate modulations for specific navigational goals, as well as for navigational planning and goal arrival. Going beyond this work, using a novel oscillation detection algorithm, we identify phase-locked neural firing that encodes information about a person's prospective navigational goal in the absence of firing rate changes. These results provide evidence for navigational planning and contextual accounts of human MTL function at the single-neuron level. More generally, our findings identify phase-coded neuronal firing as a component of the human neural code.

Data availability

The human single neuron recordings raw data can be obtained upon request from Joshua Jacobs (joshua.jacobs@columbia.edu). At this point, the raw data has not been made publicly available to ensure controlled access to the dataset and that the patients' anonymity is not compromised.

The following previously published data sets were used

Article and author information

Author details

  1. Andrew J Watrous

    Department of Biomedical Engineering, Columbia University, New York, United States
    For correspondence
    andrew.j.watrous@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3107-3726
  2. Jonathan Miller

    Department of Biomedical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Salman E Qasim

    Department of Biomedical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Itzhak Fried

    Department of Neurosurgery, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5962-2678
  5. Joshua Jacobs

    Department of Biomedical Engineering, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Neurological Disorders and Stroke (NS033221)

  • Itzhak Fried

National Institute of Neurological Disorders and Stroke (NS084017)

  • Itzhak Fried

National Institute of Mental Health (MH104606)

  • Joshua Jacobs

National Science Foundation (DGE 16-44869)

  • Salman E Qasim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The Medical Institutional Review Board at the University of California-Los Angeles approved this study (IRB#10-000973) involving recordings from patients with drug-resistant epilepsy who provided informed consent to participate in research.

Copyright

© 2018, Watrous et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,204
    views
  • 466
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew J Watrous
  2. Jonathan Miller
  3. Salman E Qasim
  4. Itzhak Fried
  5. Joshua Jacobs
(2018)
Phase-tuned neuronal firing encodes human contextual representations for navigational goals
eLife 7:e32554.
https://doi.org/10.7554/eLife.32554

Share this article

https://doi.org/10.7554/eLife.32554

Further reading

    1. Neuroscience
    Mihály Vöröslakos, Yunchang Zhang ... György Buzsáki
    Tools and Resources

    Brain states fluctuate between exploratory and consummatory phases of behavior. These state changes affect both internal computation and the organism’s responses to sensory inputs. Understanding neuronal mechanisms supporting exploratory and consummatory states and their switching requires experimental control of behavioral shifts and collecting sufficient amounts of brain data. To achieve this goal, we developed the ThermoMaze, which exploits the animal’s natural warmth-seeking homeostatic behavior. By decreasing the floor temperature and selectively heating unmarked areas, we observed that mice avoided the aversive state by exploring the maze and finding the warm spot. In its design, the ThermoMaze is analogous to the widely used water maze but without the inconvenience of a wet environment and, therefore, allows the collection of physiological data in many trials. We combined the ThermoMaze with electrophysiology recording, and report that spiking activity of hippocampal CA1 neurons during sharp-wave ripple events encode the position of mice. Thus, place-specific firing is not confined to locomotion and associated theta oscillations but persist during waking immobility and sleep at the same location. The ThermoMaze will allow for detailed studies of brain correlates of immobility, preparatory–consummatory transitions, and open new options for studying behavior-mediated temperature homeostasis.

    1. Neuroscience
    Sainan Liu, Jiepin Huang ... Yan Yang
    Research Article

    Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.