Neurogenic decisions require a cell cycle independent function of the CDC25B phosphatase

Abstract

A fundamental issue in developmental biology and in organ homeostasis is understanding the molecular mechanisms governing the balance between stem cell maintenance and differentiation into a specific lineage. Accumulating data suggest that cell cycle dynamics play a major role in the regulation of this balance. Here we show that the G2/M cell cycle regulator CDC25B phosphatase is required in mammals to finely tune neuronal production in the neural tube. We show that in chick neural progenitors, CDC25B activity favors fast nuclei departure from the apical surface in early G1, stimulates neurogenic divisions and promotes neuronal differentiation. We design a mathematical model showing that within a limited period of time, cell cycle length modifications cannot account for changes in the ratio of the mode of division. Using a CDC25B point mutation that cannot interact with CDK, we show that part of CDC25B activity is independent of its action on the cell cycle.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Frédéric Bonnet

    Centre de Biologie du Développement, Université de Toulouse, CNRS, UPS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Angie Molina

    Centre de Biologie du Développement, Université de Toulouse, CNRS, UPS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Melanie Roussat

    Centre de Biologie du Développement, Université de Toulouse, CNRS, UPS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Manon Azais

    Centre de Recherches sur la Cognition Animale, Université de Toulouse, CNRS, UPS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Sophie Vialar

    Centre de Biologie du Développement, Université de Toulouse, CNRS, UPS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Jacques Gautrais

    Centre de Recherches sur la Cognition Animale, Université de Toulouse, CNRS, UPS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7002-9920
  7. Fabienne Pituello

    Centre de Biologie du Développement, Université de Toulouse, CNRS, UPS, Toulouse, France
    For correspondence
    fabienne.pituello@univ-tlse3.fr
    Competing interests
    The authors declare that no competing interests exist.
  8. Eric Agius

    Centre de Biologie du Développement, Université de Toulouse, CNRS, UPS, Toulouse, France
    For correspondence
    eric.agius@univ-tlse3.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2123-9283

Funding

Centre National de la Recherche Scientifique

  • Frédéric Bonnet
  • Angie Molina
  • Melanie Roussat
  • Manon Azais
  • Sophie Vialar
  • Jacques Gautrais
  • Fabienne Pituello
  • Eric Agius

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

  • Frédéric Bonnet
  • Melanie Roussat
  • Manon Azais

Fondation ARC pour la Recherche sur le Cancer

  • Angie Molina

Fédération pour la Recherche sur le Cerveau

  • Angie Molina

Université de Toulouse

  • Jacques Gautrais
  • Fabienne Pituello
  • Eric Agius

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were performed in accordance with European Community guidelines regarding care and use of animals, agreement from the Ministère de l'Enseignement Supérieur et de la Recherche number: C3155511, reference 01024.01 and the CNRS recommendations

Copyright

© 2018, Bonnet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,638
    views
  • 257
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Frédéric Bonnet
  2. Angie Molina
  3. Melanie Roussat
  4. Manon Azais
  5. Sophie Vialar
  6. Jacques Gautrais
  7. Fabienne Pituello
  8. Eric Agius
(2018)
Neurogenic decisions require a cell cycle independent function of the CDC25B phosphatase
eLife 7:e32937.
https://doi.org/10.7554/eLife.32937

Share this article

https://doi.org/10.7554/eLife.32937

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.