HIF-2α is essential for carotid body development and function

  1. David Macias  Is a corresponding author
  2. Andrew S Cowburn
  3. Hortensia Torres-Torrelo
  4. Patricia Ortega-Sáenz
  5. José López-Barneo
  6. Randall Johnson  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Instituto de Biomedicina de Sevilla (IBiS), Spain

Abstract

Mammalian adaptation to oxygen flux occurs at many levels, from shifts in cellular metabolism to physiological adaptations facilitated by the sympathetic nervous system and carotid body (CB). Interactions between differing forms of adaptive response to hypoxia, including transcriptional responses orchestrated by the Hypoxia Inducible transcription Factors (HIFs), are complex and clearly synergistic. We show here that there is an absolute developmental requirement for HIF-2α, one of the HIF isoforms, for growth and survival of oxygen sensitive glomus cells of the carotid body. The loss of these cells renders mice incapable of ventilatory responses to hypoxia, and this has striking effects on processes as diverse as arterial pressure regulation, exercise performance, and glucose homeostasis. We show that the expansion of the glomus cells is correlated with mTORC1 activation, and is functionally inhibited by rapamycin treatment. These findings demonstrate the central role played by HIF-2α in carotid body development, growth and function.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. David Macias

    Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    dm670@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8676-1964
  2. Andrew S Cowburn

    Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Hortensia Torres-Torrelo

    Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Patricia Ortega-Sáenz

    Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. José López-Barneo

    Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Randall Johnson

    Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    rsj33@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4084-6639

Funding

Wellcome

  • Randall Johnson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This work was carried out with approval and following review of the University of Cambridge AWERB (Animal Welfare Ethical Review Board) and under license of the UK Home Office (Home Office License numbers 80/2618 and PC64B8953).

Copyright

© 2018, Macias et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,408
    views
  • 396
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Macias
  2. Andrew S Cowburn
  3. Hortensia Torres-Torrelo
  4. Patricia Ortega-Sáenz
  5. José López-Barneo
  6. Randall Johnson
(2018)
HIF-2α is essential for carotid body development and function
eLife 7:e34681.
https://doi.org/10.7554/eLife.34681

Share this article

https://doi.org/10.7554/eLife.34681

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.