Dlk1-Dio3 locus-derived LncRNAs perpetuate postmitotic motor neuron cell fate and subtype identity
Abstract
The mammalian imprinted Dlk1-Dio3 locus produces multiple long non-coding RNAs (lncRNAs) from the maternally inherited allele, including Meg3 (i.e., Gtl2) in the mammalian genome. Although this locus has well-characterized functions in stem cell and tumor contexts, its role during neural development is unknown. By profiling cell types at each stage of embryonic stem cell derived motor neurons (ESC~MNs) that recapitulate spinal cord development, we uncovered that lncRNAs expressed from the Dlk1-Dio3 locus are predominantly and gradually enriched in rostral motor neurons (MNs). Mechanistically, Meg3 and other Dlk1-Dio3 locus-derived lncRNAs facilitate Ezh2/Jarid2 interactions. Loss of these lncRNAs compromises the H3K27me3 landscape, leading to aberrant expression of progenitor and caudal Hox genes in postmitotic MNs. Our data thus illustrate that these lncRNAs in the Dlk1-Dio3 locus, particularly Meg3, play a critical role in maintaining postmitotic MN cell fate by repressing progenitor genes and they shape MN subtype identity by regulating Hox genes.
Data availability
All microarray, RNA-seq, ChIP-seq data have been deposited in GEO under accession codes GSE114283, GSE114285 and GSE114228.
-
Genome-wide maps of H3K27me3 in chromatin state in embryonic stem cells differentiated motor neuronsPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE114283).
-
Next Generation Sequencing Facilitates Quantitative Analysis of ES, pMN, MN, and IN TranscriptomesPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE114285).
-
Transcriptome analysis of Meg3 KD and IG-DMR maternal deletion in ESC, pMN, and MNPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE114228).
-
Induced V5-tagged Lhx3 (iLhx3-V5) in iNIL3-induced motor neurons (Day 4)Publicly available at the NCBI Gene Expression Omnibus (accession no: GSM782847).
-
Isl1/2 in iNIL3-induced motor neurons (Day 4)Publicly available at the NCBI Gene Expression Omnibus (accession no: GSM782848).
-
H3K4me3Publicly available at the NCBI Gene Expression Omnibus (accession no: GSM1468401).
-
H3K27ac_day6Publicly available at the NCBI Gene Expression Omnibus (accession no: GSM2098385).
-
ATAC_seq_day6Publicly available at the NCBI Gene Expression Omnibus (accession no: GSM2098391).
-
RAR_Day2+8hrsRAPublicly available at the NCBI Gene Expression Omnibus (accession no: GSM482750).
-
Pol2-S5P_Day2+8hPublicly available at the NCBI Gene Expression Omnibus (accession no: GSM981593).
-
ES-WTPublicly available at the NCBI Gene Expression Omnibus (accession no: GSM2420680).
-
AK4-WTPublicly available at the NCBI Gene Expression Omnibus (accession no: GSM2420683).
-
AK7-WTPublicly available at the NCBI Gene Expression Omnibus (accession no: GSM2420684).
Article and author information
Author details
Funding
Ministry of Science and Technology, Taiwan (RO1)
- Jun-An Chen
National Health Research Institutes (CDG)
- Jun-An Chen
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All of the live animals were kept in an SPF animal facility, approved and overseen by IACUC (12-07-389 ) Academia Sinica.
Copyright
© 2018, Yen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,132
- views
-
- 602
- downloads
-
- 45
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Developmental Biology
Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.