An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice

  1. João P L Castro
  2. Michelle N Yancoskie
  3. Marta Marchini
  4. Stefanie Belohlavy
  5. Layla Hiramatsu
  6. Marek Kučka
  7. William H Beluch
  8. Ronald Naumann
  9. Isabella Skuplik
  10. John Cobb
  11. Nick H Barton
  12. Campbell Rolian  Is a corresponding author
  13. Yingguang Frank Chan  Is a corresponding author
  1. Friedrich Miescher Laboratory of the Max Planck Society, Germany
  2. University of Calgary, Canada
  3. IST Austria, Austria
  4. Max Planck Institute for Cell Biology and Genetics, Germany

Abstract

Evolutionary studies are often limited by missing data that are critical to understanding the history of selection. Selection experiments, which reproduce rapid evolution under controlled conditions, are excellent tools to study how genomes evolve under selection. Here we present a genomic dissection of the Longshanks selection experiment, in which mice were selectively bred over 20 generations for longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. We synthesized evolutionary theory, genome sequences and molecular genetics to understand the selection response and found that it involved both polygenic adaptation and discrete loci of major effect, with the strongest loci tending to be selected in parallel between replicates. We show that selection may favor de-repression of bone growth through inactivating two limb enhancers of an inhibitor, Nkx3-2. Our integrative genomic analyses thus show that it is possible to connect individual base-pair changes to the overall selection response.

Data availability

Sequencing data have been deposited in SRA (accession number SRP165718), GEO (accession numbers GSE121564, GSE121565 and GSE121566)Non-sequence data have been deposited at Dryad (doi:10.5061/dryad.0q2h6tk).Analytical code and additional notes have been deposited in the following repository: https://github.com/evolgenomics/LongshanksAdditional raw data and code are hosted via our institute's FTP servers at http://ftp.tuebingen.mpg.de/fml/ag-chan/Longshanks/

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. João P L Castro

    Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Michelle N Yancoskie

    Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Marta Marchini

    University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Stefanie Belohlavy

    IST Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Layla Hiramatsu

    Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Marek Kučka

    Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. William H Beluch

    Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ronald Naumann

    Max Planck Institute for Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Isabella Skuplik

    University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. John Cobb

    University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Nick H Barton

    IST Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8548-5240
  12. Campbell Rolian

    University of Calgary, Calgary, Canada
    For correspondence
    cprolian@ucalgary.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7242-342X
  13. Yingguang Frank Chan

    Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
    For correspondence
    frank.chan@tue.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6292-9681

Funding

Natural Sciences and Engineering Research Council of Canada (4181932)

  • Campbell Rolian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures described in this study have been approved by the applicable University institutional ethics committee for animal welfare at the University of Calgary (HSACC Protocols M08146 and AC13-0077); or local competent authority: Landesdirektion Sachsen, Germany, permit number 24-9168.11-9/2012-5.

Copyright

© 2019, Castro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,250
    views
  • 510
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. João P L Castro
  2. Michelle N Yancoskie
  3. Marta Marchini
  4. Stefanie Belohlavy
  5. Layla Hiramatsu
  6. Marek Kučka
  7. William H Beluch
  8. Ronald Naumann
  9. Isabella Skuplik
  10. John Cobb
  11. Nick H Barton
  12. Campbell Rolian
  13. Yingguang Frank Chan
(2019)
An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice
eLife 8:e42014.
https://doi.org/10.7554/eLife.42014

Share this article

https://doi.org/10.7554/eLife.42014

Further reading

    1. Developmental Biology
    2. Neuroscience
    Odessa R Yabut, Jessica Arela ... Samuel J Pleasure
    Research Article

    Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, Suppressor of Fused (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MBSHH). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and SUFU mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MBSHH cases and that FGF5 expression is uniquely upregulated in infantile MBSHH tumors. Similarly, mice lacking SUFU (Sufu-cKO) ectopically express Fgf5 specifically along the secondary fissure where GNPs harbor preneoplastic lesions and show that FGFR signaling is also ectopically activated in this region. Treatment with an FGFR antagonist rescues the severe GNP hyperplasia and restores cerebellar architecture. Thus, direct inhibition of FGF signaling may be a promising and novel therapeutic candidate for infantile MBSHH.

    1. Developmental Biology
    2. Genetics and Genomics
    Svanhild Nornes, Susann Bruche ... Sarah De Val
    Research Article

    The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1 and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4 or venous-enriched NR2F2. This cohort of well characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signalling pathways with arterial gene expression.