How significant are the public dimensions of faculty work in review, promotion, and tenure documents?
Abstract
Much of the work done by faculty at both public and private universities has significant public dimensions: it is often paid for by public funds; it is often aimed at serving the public good; and it is often subject to public evaluation. To understand how the public dimensions of faculty work are valued, we analyzed review, promotion, and tenure documents from a representative sample of 129 universities in the US and Canada. Terms and concepts related to public and community are mentioned in a large portion of documents, but mostly in ways that relate to service, which is an undervalued aspect of academic careers. Moreover, the documents make significant mention of traditional research outputs and citation-based metrics: however, such outputs and metrics reward faculty work targeted to academics, and often disregard the public dimensions. Institutions that seek to embody their public mission could therefore work towards changing how faculty work is assessed and incentivized.
Data availability
The data that support the findings of this study are available in the Harvard Dataverse with the identifier https://doi.org/10.7910/DVN/VY4TJE (Alperin et al., 2019). These data include the list of institutions and academic units for which we have acquired documents along with an indicator of whether each term and concept studied was found in the documents for the institution or academic unit. The data also include the aggregated values and chi-square calculations reported. The code used for computing these aggregations can be found on Github https://github.com/ScholCommLab/rpt-project (Alperin, 2019). The documents collected are available on request from the corresponding author (JPA). These documents are not publicly available due to copyright restrictions.
-
Terms and Concepts found in Tenure and Promotion Guidelines from the US and CanadaHarvard Dataverse, 2018-05-22.
Article and author information
Author details
Funding
Open Society Foundations (OR2016-29841)
- Juan Pablo Alperin
- Meredith T Niles
- Erin C McKiernan
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Alperin et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,338
- views
-
- 518
- downloads
-
- 97
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Medicine
Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.
-
- Computational and Systems Biology
Measuring mitochondrial respiration in frozen tissue samples provides the first comprehensive atlas of how aging affects mitochondrial function in mice.