NHR-8 and P-glycoproteins uncouple xenobiotic resistance from longevity in chemosensory C. elegans mutants

Abstract

Longevity is often associated with stress resistance, but whether they are causally linked is incompletely understood. Here we investigate chemosensory defective Caenorhabditis elegans mutants that are long-lived and stress resistant. We find that mutants in the intraflagellar transport protein gene osm-3 were significantly protected from tunicamycin-induced ER stress. While osm-3 lifespan extension is dependent on the key longevity factor DAF-16/FOXO, tunicamycin resistance was not. osm-3 mutants are protected from bacterial pathogens, which is pmk-1 p38 MAP kinase dependent while TM resistance was pmk-1 independent. Expression of P-glycoprotein (PGP) xenobiotic detoxification genes was elevated in osm-3 mutants and their knockdown or inhibition with verapamil suppressed tunicamycin resistance. The nuclear hormone receptor nhr-8 was necessary to regulate a subset of PGPs. We thus identify a cell-nonautonomous regulation of xenobiotic detoxification and show that separate pathways are engaged to mediate longevity, pathogen resistance, and xenobiotic detoxification in osm-3 mutants.

Data availability

Raw sequencing data were deposited to the NCBI Gene Expression Omnibus (GEO) under the accession number GSE144675.

The following data sets were generated

Article and author information

Author details

  1. Gabriel A Guerrero

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Maxime J Derisbourg

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    For correspondence
    mderisbourg@age.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  3. Felix AMC Mayr

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Laura E Wester

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Marco Giorda

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. J Eike Dinort

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Matias D. Hartman

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Klara Schilling

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. María José Alonso

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Ryan J Lu

    University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Bérénice A Benayoun

    University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7401-4777
  12. Martin Sebastian Denzel

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    For correspondence
    mdenzel@age.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5691-3349

Funding

H2020 European Research Council (ERC-StG 640254)

  • Martin Sebastian Denzel

Max-Planck-Gesellschaft

  • Gabriel A Guerrero

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Guerrero et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,603
    views
  • 225
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gabriel A Guerrero
  2. Maxime J Derisbourg
  3. Felix AMC Mayr
  4. Laura E Wester
  5. Marco Giorda
  6. J Eike Dinort
  7. Matias D. Hartman
  8. Klara Schilling
  9. María José Alonso
  10. Ryan J Lu
  11. Bérénice A Benayoun
  12. Martin Sebastian Denzel
(2021)
NHR-8 and P-glycoproteins uncouple xenobiotic resistance from longevity in chemosensory C. elegans mutants
eLife 10:e53174.
https://doi.org/10.7554/eLife.53174

Share this article

https://doi.org/10.7554/eLife.53174

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Tackhoon Kim, Byung-Sun Park ... Timothy Lu
    Research Article

    Tyrosine kinases play a crucial role in cell proliferation and survival and are extensively investigated as targets for cancer treatment. However, the efficacy of most tyrosine kinase inhibitors (TKIs) in cancer therapy is limited due to resistance. In this study, we identify a synergistic combination therapy involving TKIs for the treatment of triple negative breast cancer. By employing pairwise tyrosine kinase knockout CRISPR screens, we identify FYN and KDM4 as critical targets whose inhibition enhances the effectiveness of TKIs, such as NVP-ADW742 (IGF-1R inhibitor), gefitinib (EGFR inhibitor), and imatinib (ABL inhibitor) both in vitro and in vivo. Mechanistically, treatment with TKIs upregulates the transcription of KDM4, which in turn demethylates H3K9me3 at FYN enhancer for FYN transcription. This compensatory activation of FYN and KDM4 contributes to the resistance against TKIs. FYN expression is associated with therapy resistance and persistence by demonstrating its upregulation in various experimental models of drug-tolerant persisters and residual disease following targeted therapy, chemotherapy, and radiotherapy. Collectively, our study provides novel targets and mechanistic insights that can guide the development of effective combinatorial targeted therapies, thus maximizing the therapeutic benefits of TKIs.

    1. Genetics and Genomics
    2. Neuroscience
    Tanya Wolff, Mark Eddison ... Gerald M Rubin
    Research Article

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.