Spatiotemporally precise optogenetic activation of sensory neurons in freely walking Drosophila

  1. Brian D DeAngelis
  2. Jacob A Zavatone-Veth
  3. Aneysis D Gonzalez-Suarez
  4. Damon A Clark  Is a corresponding author
  1. Yale University, United States
  2. Harvard University, United States

Abstract

Previous work has characterized how walking Drosophila coordinate the movements of individual limbs (DeAngelis, Zavatone-Veth, and Clark, 2019). To understand the circuit basis of this coordination, one must characterize how sensory feedback from each limb affects walking behavior. However, it has remained difficult to manipulate neural activity in individual limbs of freely moving animals. Here, we demonstrate a simple method for optogenetic stimulation with body side-, body segment-, and limb-specificity that does not require real-time tracking. Instead, we activate at random, precise locations in time and space and use post hoc analysis to determine behavioral responses to specific activations. Using this method, we have characterized limb coordination and walking behavior in response to transient activation of mechanosensitive bristle neurons and sweet-sensing chemoreceptor neurons. Our findings reveal that activating these neurons has opposite effects on turning, and that activations in different limbs and body regions produce distinct behaviors.

Data availability

Source data were deposited on Dryad: https://doi.org/10.5061/dryad.nzs7h44nk.Analysis code is available here: https://github.com/ClarkLabCode/FlyLimbOptoCode.

The following data sets were generated

Article and author information

Author details

  1. Brian D DeAngelis

    Interdepartmental Neuroscience Program, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9418-7619
  2. Jacob A Zavatone-Veth

    Department of Physics, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4060-1738
  3. Aneysis D Gonzalez-Suarez

    Interdepartmental Neuroscience Program, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Damon A Clark

    Department of Molecular, Cellular, Developmental Biology, Yale University, New Haven, United States
    For correspondence
    damon.clark@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8487-700X

Funding

National Institutes of Health (EY026555)

  • Brian D DeAngelis
  • Damon A Clark

National Institutes of Health (EY026878)

  • Brian D DeAngelis
  • Damon A Clark

Chicago Community Trust (Searle Scholar Award)

  • Damon A Clark

Alfred P. Sloan Foundation (Fellowship)

  • Damon A Clark

National Science Foundation (GRF)

  • Brian D DeAngelis

Smith Family Foundation (Scholar Award)

  • Brian D DeAngelis
  • Damon A Clark

National Science Foundation (IOS 1558103)

  • Jacob A Zavatone-Veth
  • Damon A Clark

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, DeAngelis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,352
    views
  • 389
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian D DeAngelis
  2. Jacob A Zavatone-Veth
  3. Aneysis D Gonzalez-Suarez
  4. Damon A Clark
(2020)
Spatiotemporally precise optogenetic activation of sensory neurons in freely walking Drosophila
eLife 9:e54183.
https://doi.org/10.7554/eLife.54183

Share this article

https://doi.org/10.7554/eLife.54183

Further reading

    1. Neuroscience
    Haowen Liu, Lei Li ... Zhitao Hu
    Research Article

    Munc13 plays a crucial role in short-term synaptic plasticity by regulating synaptic vesicle (SV) exocytosis and neurotransmitter release at the presynaptic terminals. However, the intricate mechanisms governing these processes have remained elusive due to the presence of multiple functional domains within Munc13, each playing distinct roles in neurotransmitter release. Here, we report a coordinated mechanism in the Caenorhabditis elegans Munc13 homolog UNC-13 that controls the functional switch of UNC-13 during synaptic transmission. Mutations disrupting the interactions of C1 and C2B with diacylglycerol (DAG) and phosphatidylinositol 4,5-bisphosphate (PIP2) on the plasma membrane induced the gain-of-function state of UNC-13L, the long UNC-13 isoform, resulting in enhanced SV release. Concurrent mutations in both domains counteracted this enhancement, highlighting the functional interdependence of C1 and C2B. Intriguingly, the individual C1 and C2B domains exhibited significantly stronger facilitation of SV release compared to the presence of both domains, supporting a mutual inhibition of C1 and C2B under basal conditions. Moreover, the N-terminal C2A and X domains exhibited opposite regulation on the functional switch of UNC-13L. Furthermore, we identified the polybasic motif in the C2B domain that facilitates SV release. Finally, we found that disruption of C1 and C2B membrane interaction in UNC-13S, the short isoform, leads to functional switch between gain-of-function and loss-of-function. Collectively, our findings provide a novel mechanism for SV exocytosis wherein UNC-13 undergoes functional switches through the coordination of its major domains, thereby regulating synaptic transmission and short-term synaptic plasticity.

    1. Neuroscience
    Ning Wang, Yimeng Wang ... Dong Ming
    Research Article

    The experience-dependent spatial cognitive process requires sequential organization of hippocampal neural activities by theta rhythm, which develops to represent highly compressed information for rapid learning. However, how the theta sequences were developed in a finer timescale within theta cycles remains unclear. In this study, we found in rats that sweep-ahead structure of theta sequences developing with exploration was predominantly dependent on a relatively large proportion of FG-cells, that is a subset of place cells dominantly phase-locked to fast gamma rhythms. These ensembles integrated compressed spatial information by cells consistently firing at precessing slow gamma phases within the theta cycle. Accordingly, the sweep-ahead structure of FG-cell sequences was positively correlated with the intensity of slow gamma phase precession, in particular during early development of theta sequences. These findings highlight the dynamic network modulation by fast and slow gamma in the development of theta sequences which may further facilitate memory encoding and retrieval.