Abstract

PKD2 (polycystin-2, TRPP1), a TRP polycystin channel, is expressed in endothelial cells (ECs), but its physiological functions in this cell type are unclear. Here, we generated inducible, EC-specific Pkd2 knockout mice to examine vascular functions of PKD2. Data show that a broad range of intravascular flow rates stimulate EC PKD2 channels, producing vasodilation. Flow-mediated PKD2 channel activation leads to calcium influx that activates SK/IK channels and eNOS serine 1176 phosphorylation in ECs. These signaling mechanisms produce arterial hyperpolarization and vasodilation. In contrast, EC PKD2 channels do not contribute to acetylcholine-induced vasodilation, suggesting stimulus-specific function. EC-specific PKD2 knockout elevated blood pressure in mice without altering cardiac function or kidney anatomy. These data demonstrate that flow stimulates PKD2 channels in ECs, leading to SK/IK channel and eNOS activation, hyperpolarization, vasodilation and a reduction in systemic blood pressure. Thus, PKD2 channels are a major component of functional flow sensing in the vasculature.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Charles E MacKay

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. M Dennis Leo

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Carlos Fernández-Peña

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0726-3204
  4. Raquibul Hasan

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wen Yin

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alejandro Mata-Daboin

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Simon Bulley

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5985-0489
  8. Jesse Gammons

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Salvatore Mancarella

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jonathan H Jaggar

    Department of Physiology, University of Tennessee Health Science Center, Memphis, United States
    For correspondence
    jjaggar@uthsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1505-3335

Funding

National Institutes of Health (HL133256)

  • Jonathan H Jaggar

National Institutes of Health (HL137745)

  • Jonathan H Jaggar

American Heart Association (16SDG27460007)

  • Simon Bulley

American Heart Association (15SDG22680019)

  • M Dennis Leo

American Heart Association (20POST35210200)

  • Charles E MacKay

American Heart Association (16POST30960010)

  • Raquibul Hasan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the Animal Care and Use Committee of the University of Tennessee (protocol 17-068.0).

Copyright

© 2020, MacKay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,059
    views
  • 352
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Charles E MacKay
  2. M Dennis Leo
  3. Carlos Fernández-Peña
  4. Raquibul Hasan
  5. Wen Yin
  6. Alejandro Mata-Daboin
  7. Simon Bulley
  8. Jesse Gammons
  9. Salvatore Mancarella
  10. Jonathan H Jaggar
(2020)
Intravascular flow stimulates PKD2 (polycystin-2) channels in endothelial cells to reduce blood pressure
eLife 9:e56655.
https://doi.org/10.7554/eLife.56655

Share this article

https://doi.org/10.7554/eLife.56655

Further reading

    1. Structural Biology and Molecular Biophysics
    Joseph Clayton, Aarion Romany ... Jana Shen
    Research Article

    Aberrant signaling of BRAFV600E is a major cancer driver. Current FDA-approved RAF inhibitors selectively inhibit the monomeric BRAFV600E and suffer from tumor resistance. Recently, dimer-selective and equipotent RAF inhibitors have been developed; however, the mechanism of dimer selectivity is poorly understood. Here, we report extensive molecular dynamics (MD) simulations of the monomeric and dimeric BRAFV600E in the apo form or in complex with one or two dimer-selective (PHI1) or equipotent (LY3009120) inhibitor(s). The simulations uncovered the unprecedented details of the remarkable allostery in BRAFV600E dimerization and inhibitor binding. Specifically, dimerization retrains and shifts the αC helix inward and increases the flexibility of the DFG motif; dimer compatibility is due to the promotion of the αC-in conformation, which is stabilized by a hydrogen bond formation between the inhibitor and the αC Glu501. A more stable hydrogen bond further restrains and shifts the αC helix inward, which incurs a larger entropic penalty that disfavors monomer binding. This mechanism led us to propose an empirical way based on the co-crystal structure to assess the dimer selectivity of a BRAFV600E inhibitor. Simulations also revealed that the positive cooperativity of PHI1 is due to its ability to preorganize the αC and DFG conformation in the opposite protomer, priming it for binding the second inhibitor. The atomically detailed view of the interplay between BRAF dimerization and inhibitor allostery as well as cooperativity has implications for understanding kinase signaling and contributes to the design of protomer selective RAF inhibitors.