Autophagy in T cells from aged donors is maintained by spermidine, and correlates with function and vaccine responses

  1. Ghada Alsaleh  Is a corresponding author
  2. Isabel Panse
  3. Leo Swadling
  4. Hanlin Zhang
  5. Felix Richter
  6. Alain Meyer
  7. Janet Lord
  8. Eleanor Barnes
  9. Paul Klenerman
  10. Christopher Green
  11. Anna Katharina Simon  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University College London, United Kingdom
  3. Université de Strasbourg, France
  4. University of Birmingham, United Kingdom

Abstract

Older adults are at high risk for infectious diseases such as observed at the recent COVID-19 outbreak and vaccination seems to be the only long-term solution to the pandemic. While most vaccines are less efficacious in older adults, little is known about the molecular mechanisms that underpin this. Autophagy, a major degradation pathway and one of the few processes known to prevent aging, is critical for the maintenance of immune memory in mice. Here, we show that autophagy is specifically induced in vaccine-induced antigen-specific CD8+ T cells in healthy human volunteers. In addition, reduced IFN secretion by RSV-induced T cells in older vaccinees correlates with low autophagy levels. We demonstrate in human donors that levels of the endogenous autophagy-inducing metabolite spermidine fall in T cells with age. Spermidine supplementation of T cells from old donors recovers their autophagy level and function, similar to young donors' cells, in which spermidine biosynthesis has been inhibited. Finally, our data show that endogenous spermidine maintains autophagy via the translation factor eIF5A and transcription factor TFEB. With these findings we have uncovered novel targets and biomarkers for the development of anti-aging drugs for human T cells, providing evidence for the use of spermidine in improving vaccine immunogenicity in the aged human population.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1-5 and figure supplements.

Article and author information

Author details

  1. Ghada Alsaleh

    The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
    For correspondence
    ghada.alsaleh@kennedy.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4211-3420
  2. Isabel Panse

    The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, OXford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Leo Swadling

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Hanlin Zhang

    The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Felix Richter

    The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alain Meyer

    Fédération de médecine translationnelle, Université de Strasbourg, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Janet Lord

    MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing,, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Eleanor Barnes

    Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Paul Klenerman

    Nuffield Dept of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4307-9161
  10. Christopher Green

    Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Anna Katharina Simon

    The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
    For correspondence
    katja.simon@kennedy.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (WT109665MA)

  • Anna Katharina Simon

National Institute for Health Research

  • Paul Klenerman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were approved by the local ethical review committee and performed under UK project licenses PPL 30/3388.

Human subjects: Human vaccine samples: Human peripheral blood mononuclear cells (PBMC) were obtained under the ethics reference NRES Berkshire 13/SC/0023, from phase I clinical trials of novel viral-vectored vaccines for hepatitis-C virus (HCV; NCT01070407 and NCT01296451)or respiratory syncytial virus (RSV).Human healthy control: The study was approved by the Local Ethics Committee Oxford and Birmingham:The acquisition of normal control human tissue for medical research Kennedy Institute of Rheumatology. University of Oxford, Rec: 11/h0711/7 collection.University of Birmingham Research Ethics Committee, Reference ERN_12-1184R2 , Investigations of the ageing immune system" Application for Ethical Review ERN_12-1184R2, UoB Ref: 17-1106.

Copyright

© 2020, Alsaleh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ghada Alsaleh
  2. Isabel Panse
  3. Leo Swadling
  4. Hanlin Zhang
  5. Felix Richter
  6. Alain Meyer
  7. Janet Lord
  8. Eleanor Barnes
  9. Paul Klenerman
  10. Christopher Green
  11. Anna Katharina Simon
(2020)
Autophagy in T cells from aged donors is maintained by spermidine, and correlates with function and vaccine responses
eLife 9:e57950.
https://doi.org/10.7554/eLife.57950

Share this article

https://doi.org/10.7554/eLife.57950

Further reading

    1. Immunology and Inflammation
    Graham L Barlow, Christian M Schürch ... Paul L Bollyky
    Research Article

    In autoimmune type 1 diabetes (T1D), immune cells infiltrate and destroy the islets of Langerhans — islands of endocrine tissue dispersed throughout the pancreas. However, the contribution of cellular programs outside islets to insulitis is unclear. Here, using CO-Detection by indEXing (CODEX) tissue imaging and cadaveric pancreas samples, we simultaneously examine islet and extra-islet inflammation in human T1D. We identify four sub-states of inflamed islets characterized by the activation profiles of CD8+T cells enriched in islets relative to the surrounding tissue. We further find that the extra-islet space of lobules with extensive islet-infiltration differs from the extra-islet space of less infiltrated areas within the same tissue section. Finally, we identify lymphoid structures away from islets enriched in CD45RA+ T cells — a population also enriched in one of the inflamed islet sub-states. Together, these data help define the coordination between islets and the extra-islet pancreas in the pathogenesis of human T1D.

    1. Cell Biology
    2. Immunology and Inflammation
    Mykhailo Vladymyrov, Luca Marchetti ... Britta Engelhardt
    Tools and Resources

    The endothelial blood-brain barrier (BBB) strictly controls immune cell trafficking into the central nervous system (CNS). In neuroinflammatory diseases such as multiple sclerosis, this tight control is, however, disturbed, leading to immune cell infiltration into the CNS. The development of in vitro models of the BBB combined with microfluidic devices has advanced our understanding of the cellular and molecular mechanisms mediating the multistep T-cell extravasation across the BBB. A major bottleneck of these in vitro studies is the absence of a robust and automated pipeline suitable for analyzing and quantifying the sequential interaction steps of different immune cell subsets with the BBB under physiological flow in vitro. Here, we present the under-flow migration tracker (UFMTrack) framework for studying immune cell interactions with endothelial monolayers under physiological flow. We then showcase a pipeline built based on it to study the entire multistep extravasation cascade of immune cells across brain microvascular endothelial cells under physiological flow in vitro. UFMTrack achieves 90% track reconstruction efficiency and allows for scaling due to the reduction of the analysis cost and by eliminating experimenter bias. This allowed for an in-depth analysis of all behavioral regimes involved in the multistep immune cell extravasation cascade. The study summarizes how UFMTrack can be employed to delineate the interactions of CD4+ and CD8+ T cells with the BBB under physiological flow. We also demonstrate its applicability to the other BBB models, showcasing broader applicability of the developed framework to a range of immune cell-endothelial monolayer interaction studies. The UFMTrack framework along with the generated datasets is publicly available in the corresponding repositories.