Cell-state transitions and collective cell movement generate an endoderm-like region in gastruloids

  1. Ali Hashmi
  2. Sham Tlili
  3. Pierre Perrin
  4. Molly Lowndes
  5. Hanna Peradziryi
  6. Joshua M Brickman
  7. Alfonso Martínez Arias
  8. Pierre-François Lenne  Is a corresponding author
  1. Aix Marseille University, CNRS, France
  2. University of Copenhagen, Denmark
  3. Universitat Pompeu Fabra, Spain

Abstract

Shaping the animal body plan is a complex process that involves the spatial organization and patterning of the different germ layers. Recent advances in live imaging have started to unravel the cellular choreography underlying this process in mammals, however, the sequence of events transforming an unpatterned cell ensemble into structured territories is largely unknown. Here, using gastruloids -3D aggregates of mouse embryonic stem cells- we study the formation of one of the three germ layers, the endoderm. We show that the endoderm is generated from an epiblast-like homogeneous state by a three-step mechanism: (i) a loss of E-cadherin mediated contacts in parts of the aggregate leading to the appearance of islands of E-cadherin expressing cells surrounded by cells devoid of E-cadherin, (ii) a separation of these two populations with islands of E-cadherin expressing cells flowing toward the aggregate tip, and (iii) their differentiation into an endoderm population. During the flow, the islands of E-cadherin expressing cells are surrounded by cells expressing T-Brachyury, reminiscent of the process occurring at the primitive streak. Consistent with recent in vivo observations, the endoderm formation in the gastruloids does not require an epithelial-to-mesenchymal transition, but rather a maintenance of an epithelial state for a subset of cells coupled with fragmentation of E-cadherin contacts in the vicinity, and a sorting process. Our data emphasize the role of signaling and tissue flows in the establishment of the body plan.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The source data and the scripts at https://zenodo.org/record/5727050

The following data sets were generated

Article and author information

Author details

  1. Ali Hashmi

    IBDM, Aix Marseille University, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Sham Tlili

    IBDM, Aix Marseille University, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Pierre Perrin

    IBDM, Aix Marseille University, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Molly Lowndes

    Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Hanna Peradziryi

    Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Joshua M Brickman

    Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1580-7491
  7. Alfonso Martínez Arias

    Systems Bioengineering, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Pierre-François Lenne

    IBDM, Aix Marseille University, CNRS, Marseille, France
    For correspondence
    pierre-francois.lenne@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1066-7506

Funding

Agence Nationale de la Recherche (ANR-19-CE13-0022)

  • Pierre-François Lenne

Agence Nationale de la Recherche (ANR-11-LABX-0054)

  • Ali Hashmi
  • Pierre-François Lenne

Agence Nationale de la Recherche (ANR-16-CONV-0001)

  • Pierre-François Lenne

Agence Nationale de la Recherche (ANR-10-INBS-04)

  • Sham Tlili
  • Pierre-François Lenne

Leverhulme Trust (VP2-2015-022)

  • Pierre-François Lenne

Leverhulme Trust (RPG- 2018-356)

  • Pierre-François Lenne

Lundbeckfonden (R198-2015-412)

  • Joshua M Brickman

Novo Nordisk Foundation Center for Basic Metabolic Research (NNF21CC0073729)

  • Joshua M Brickman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Hashmi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,849
    views
  • 683
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ali Hashmi
  2. Sham Tlili
  3. Pierre Perrin
  4. Molly Lowndes
  5. Hanna Peradziryi
  6. Joshua M Brickman
  7. Alfonso Martínez Arias
  8. Pierre-François Lenne
(2022)
Cell-state transitions and collective cell movement generate an endoderm-like region in gastruloids
eLife 11:e59371.
https://doi.org/10.7554/eLife.59371

Share this article

https://doi.org/10.7554/eLife.59371

Further reading

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.