Living Science: Theoretical musings
Abstract
There is more to theory in biology than replicating the results of experiments – the best theory papers help experimentalists to identify which of their results might be general and to plan a path through the maze of all possible future experiments.
Main text
I have always thought of theory in biology as disciplined dreaming. The discipline comes from the challenge of creatively marrying the rules of mathematics and physics with what is known of fundamental biological principles. In biology, we face problems that seem inexplicable, or at least deeply puzzling. Theoretical studies can lead the way to explore potential explanations for these problems. As an experimentalist, I have been grateful that computational models can free us from the idiosyncrasies of the particular system we study. I learned this many years ago when I asked Tom Kepler, then a postdoc, to model the results of experiments on electrically coupled oscillators that Scott Hooper and I had published several years earlier: we had found that an isolated oscillatory neuron was faster when its electrically coupled neighbors were removed (Hooper and Marder, 1987). Tom’s first simulations showed the exact opposite and I told him he must have made a mistake! He was rightfully miffed, but returned shortly with simulations which showed that both results were possible, depending on the ratio of the inward and outward currents in the model (Kepler et al., 1990).
For me, the deep take-home message of this exercise was that I had no idea that there were two cases: that an oscillator, depending on the details of how it is built, could go either faster or slower when depolarized! Because of the specific properties of the neurons we had initially studied, we had seen only one of the two possible cases and mistakenly thought that result was general. Several years later, now knowing that both cases were possible, we recognized that a different cell type showed the second case (Weimann et al., 1993). Thus, for me as a biologist, theory is valuable because it enables us to ask which of our results are likely to be general and which depend on the particular characteristics of our experimental system.
We can also use theory to ask the following question: how might a biological system solve a particular problem? In the early 1990s many neuroscientists were struck by how difficult it was to 'tune' neuronal models – that is, to find parameters that would, at least loosely, replicate the biological systems they were meant to represent. On the other hand, biological neurons find good solutions, so clearly they were not randomly sampling parameter space, but had rules or mechanisms that allowed them to find such solutions. But how?
It was already clear that neurons could maintain stable properties for many years, despite the continuous turnover of membrane proteins. Our first models to tackle this problem of feedback regulation of intrinsic excitability, or homeostatic regulation of neuronal excitability, suggested that a simple negative feedback system with an activity sensor that controlled channel density, akin to other homeostatic processes that control temperature or blood pressure, might provide a plausible explanation (LeMasson et al., 1993). Almost thirty years later, there have been thousands of studies in an intellectual lineage that follows that initial framing of the question (Turrigiano, 2017). The initial model was useful because it drew attention to a biological conundrum in a concise manner, and because it triggered investigators to do experiments they might not have otherwise done, not because it was biologically correct in its details.
Many others have written cogently about the importance of theory in biology (see, for example, Goldstein, 2018). However, my reasons for writing this article are not just to extol the virutes of theory, but to explore the additional challenges that theory manuscripts and grant applications seem to experience during peer review. You might imagine that theorists would be free spirits, letting their imaginations roam free to conjure and appreciate interesting hypotheses that can drive new ways of thinking about difficult biological problems. Instead, I am struck that theorists (as well as experimentalists) – when acting as reviewers – seem to often ask for direct connection to known biological data, and are frequently critical of theory papers. Why might this occur?
Experimentalists know how difficult it can be to collect data if they don't have the necessary tools, or if the experiment would take years to perform, so it is helpful when there is a theoretical study that points to a path through the maze of all possible future experiments. A well-designed theoretical study can also help an experimentalist to work out which features of any set of results likely approach a new general principle: a theory that does no more than replicate an existing experimental data set is unlikely to help with this endeavor.
So why are so many smart reviewers constantly asking for data that corroborate the theory before the theory is even published?
So why are so many smart reviewers constantly asking for data that corroborate the theory before the theory is even published? I imagine that theorists are aware that one could construct and study innumerable problems that would provide little new insight. Thus, one can see this as a request for reassurance that the theoretical study at hand has the potential to illuminate a biological problem. I argue that the issue is not whether there are extant data, but whether the paper provides a novel concept, large or small, into a problem yet to be understood.
Ironically, a theory paper that 'solves' a difficult problem with a simple, transparent, and elegant solution can be easily devalued. It can take months or years of work to come to a result, which once understood, seems simple, and perhaps obvious. All of the underlying work and the multiple fruitless avenues of exploration may not show, once the answer is clear. And if the answer is a few simple differential equations or calculations, the reader might feel that they could have done the work in two hours, not remembering that until it had been done, no one knew the solution, or that it was an interesting problem.
Indeed, it can be easy to mistake the complexity of the mathematics in a theory paper for the importance of the new biological insight that ensues. Which isn’t to say that, for those capable of understanding the mathematics, that there isn’t deep value in work that requires innovative and sophisticated calculations. Likewise, a low-tech experiment might give more new insight than a more technologically demanding one. Again, it is important to not be fooled by complexity of method when evaluating the value of a scientific result.
It is rare for there to be a clear point at which any scientific problem is 'finished'. So the decision of what constitutes 'a paper' is always a judgment call. However, when reviewing manuscripts many of us are guilty of focusing on the paper we would have written rather than paying attention to the one written by the authors (Marder, 2020). This is especially true for theory papers that often seem to be evaluated in terms of what the reviewer might consider the most interesting path to take, rather than the path taken. Ironically, if the manuscript is successful, there should be endless new directions to pursue, some of which may look to be more interesting or prove to be more fruitful than those taken initially by the authors. But many of these paths will only appear to be interesting or potentially fruitful because of the insights provided by the authors in the submitted manuscript. We should be grateful for those theory papers that at once answer a question and pose new ones.
Note
This essay is part of the Living Science collection.
References
-
Modulation of the lobster pyloric rhythm by the peptide proctolinJournal of Neuroscience 7:2097–2112.https://doi.org/10.1523/JNEUROSCI.07-07-02097.1987
-
The dialectic of Hebb and homeostasisPhilosophical Transactions of the Royal Society B: Biological Sciences 372:20160258.https://doi.org/10.1098/rstb.2016.0258
-
The effects of SDRNFLRFamide and TNRNFLRFamide on the motor patterns of the stomatogastric ganglion of the crab Cancer borealisJournal of Experimental Biology 181:1–26.
Article and author information
Author details
Funding
National Institutes of Health (R35 NS 097343)
- Eve Marder
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Publication history
- Received:
- Accepted:
- Version of Record published:
Copyright
© 2020, Marder
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 7,167
- views
-
- 462
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neurons during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, and ensuring adaptive responses to varying levels of danger.
-
- Neuroscience
Substance-induced social behavior deficits dramatically worsen the clinical outcome of substance use disorders; yet, the underlying mechanisms remain poorly understood. Herein, we investigated the role for the corticotropin-releasing factor receptor 1 (CRF1) in the acute sociability deficits induced by morphine and the related activity of oxytocin (OXY)- and arginine-vasopressin (AVP)-expressing neurons of the paraventricular nucleus of the hypothalamus (PVN). For this purpose, we used both the CRF1 receptor-preferring antagonist compound antalarmin and the genetic mouse model of CRF1 receptor-deficiency. Antalarmin completely abolished sociability deficits induced by morphine in male, but not in female, C57BL/6J mice. Accordingly, genetic CRF1 receptor-deficiency eliminated morphine-induced sociability deficits in male mice. Ex vivo electrophysiology studies showed that antalarmin also eliminated morphine-induced firing of PVN neurons in male, but not in female, C57BL/6J mice. Likewise, genetic CRF1 receptor-deficiency reduced morphine-induced firing of PVN neurons in a CRF1 gene expression-dependent manner. The electrophysiology results consistently mirrored the behavioral results, indicating a link between morphine-induced PVN activity and sociability deficits. Interestingly, in male mice antalarmin abolished morphine-induced firing in neurons co-expressing OXY and AVP, but not in neurons expressing only AVP. In contrast, in female mice antalarmin did not affect morphine-induced firing of neurons co-expressing OXY and AVP or only OXY, indicating a selective sex-specific role for the CRF1 receptor in opiate-induced PVN OXY activity. The present findings demonstrate a major, sex-linked, role for the CRF1 receptor in sociability deficits and related brain alterations induced by morphine, suggesting new therapeutic strategy for opiate use disorders.