Ecological adaptation in Atlantic herring is associated with large shifts in allele frequencies at hundreds of loci

  1. Fan Han
  2. Minal Jamsandekar
  3. Mats E Pettersson
  4. Leyi Su
  5. Angela Fuentes-Pardo
  6. Brian Davis
  7. Dorte Bekkevold
  8. Florian Berg
  9. Michele Casini
  10. Geir Dahle
  11. Edward D Farrell
  12. Arild Folkvord
  13. Leif Andersson  Is a corresponding author
  1. Uppsala University, Sweden
  2. Texas A&M University, United States
  3. Technical University of Denmark, Denmark
  4. University of Bergen, Norway
  5. Swedish University of Agricultural Sciences, Sweden
  6. Institute of Marine Research, Norway
  7. University College Dublin, Ireland

Abstract

Atlantic herring is widespread in North Atlantic and adjacent waters and is one of the most abundant vertebrates on earth. This species is well suited to explore genetic adaptation due to minute genetic differentiation at selectively neutral loci. Here we report hundreds of loci underlying ecological adaptation to different geographic areas and spawning conditions. Four of these represent megabase inversions confirmed by long read sequencing. The genetic architecture underlying ecological adaptation in herring deviates from expectation under a classical infinitesimal model for complex traits because of large shifts in allele frequencies at hundreds of loci under selection.

Data availability

Data availability statement. The sequence data generated in this study is available in Bioproject PRJNA642736.Code availability statement. The analyses of data have been carried out with publicly available software and all are cited in the Methods section. Custom scripts used are available in Github (https://github.com/Fan-Han/Population-analysis-with-pooled-data)

The following data sets were generated

Article and author information

Author details

  1. Fan Han

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Minal Jamsandekar

    Veterinary Integrative Biosciences, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mats E Pettersson

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7372-9076
  4. Leyi Su

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Angela Fuentes-Pardo

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Brian Davis

    Veterinary Integrative Biosciences, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dorte Bekkevold

    National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  8. Florian Berg

    Department of Biology, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1543-8112
  9. Michele Casini

    Department of Aquatic Resources, Swedish University of Agricultural Sciences, Lysekil, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. Geir Dahle

    Institute of Marine Research, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  11. Edward D Farrell

    School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  12. Arild Folkvord

    Department of Biological Sciences, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4763-0590
  13. Leif Andersson

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    For correspondence
    leif.andersson@imbim.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4085-6968

Funding

Knut och Alice Wallenbergs Stiftelse (KAW scholar)

  • Leif Andersson

Vetenskapsrådet (Senior professor)

  • Leif Andersson

Research Council of Norway (254774)

  • Arild Folkvord

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Han et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,468
    views
  • 558
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fan Han
  2. Minal Jamsandekar
  3. Mats E Pettersson
  4. Leyi Su
  5. Angela Fuentes-Pardo
  6. Brian Davis
  7. Dorte Bekkevold
  8. Florian Berg
  9. Michele Casini
  10. Geir Dahle
  11. Edward D Farrell
  12. Arild Folkvord
  13. Leif Andersson
(2020)
Ecological adaptation in Atlantic herring is associated with large shifts in allele frequencies at hundreds of loci
eLife 9:e61076.
https://doi.org/10.7554/eLife.61076

Share this article

https://doi.org/10.7554/eLife.61076

Further reading

    1. Evolutionary Biology
    Ljiljana Mihajlovic, Bharat Ravi Iyengar ... Yolanda Schaerli
    Research Article

    Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno’s hypothesis to work. We experimentally tested Ohno’s hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno’s hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno’s hypothesis that point to the importance of gene dosage.

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.