Ecological adaptation in Atlantic herring is associated with large shifts in allele frequencies at hundreds of loci

  1. Fan Han
  2. Minal Jamsandekar
  3. Mats E Pettersson
  4. Leyi Su
  5. Angela Fuentes-Pardo
  6. Brian Davis
  7. Dorte Bekkevold
  8. Florian Berg
  9. Michele Casini
  10. Geir Dahle
  11. Edward D Farrell
  12. Arild Folkvord
  13. Leif Andersson  Is a corresponding author
  1. Uppsala University, Sweden
  2. Texas A&M University, United States
  3. Technical University of Denmark, Denmark
  4. University of Bergen, Norway
  5. Swedish University of Agricultural Sciences, Sweden
  6. Institute of Marine Research, Norway
  7. University College Dublin, Ireland

Abstract

Atlantic herring is widespread in North Atlantic and adjacent waters and is one of the most abundant vertebrates on earth. This species is well suited to explore genetic adaptation due to minute genetic differentiation at selectively neutral loci. Here we report hundreds of loci underlying ecological adaptation to different geographic areas and spawning conditions. Four of these represent megabase inversions confirmed by long read sequencing. The genetic architecture underlying ecological adaptation in herring deviates from expectation under a classical infinitesimal model for complex traits because of large shifts in allele frequencies at hundreds of loci under selection.

Data availability

Data availability statement. The sequence data generated in this study is available in Bioproject PRJNA642736.Code availability statement. The analyses of data have been carried out with publicly available software and all are cited in the Methods section. Custom scripts used are available in Github (https://github.com/Fan-Han/Population-analysis-with-pooled-data)

The following data sets were generated

Article and author information

Author details

  1. Fan Han

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  2. Minal Jamsandekar

    Veterinary Integrative Biosciences, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mats E Pettersson

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7372-9076
  4. Leyi Su

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Angela Fuentes-Pardo

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Brian Davis

    Veterinary Integrative Biosciences, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dorte Bekkevold

    National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  8. Florian Berg

    Department of Biology, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1543-8112
  9. Michele Casini

    Department of Aquatic Resources, Swedish University of Agricultural Sciences, Lysekil, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. Geir Dahle

    Institute of Marine Research, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  11. Edward D Farrell

    School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  12. Arild Folkvord

    Department of Biological Sciences, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4763-0590
  13. Leif Andersson

    Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
    For correspondence
    leif.andersson@imbim.uu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4085-6968

Funding

Knut och Alice Wallenbergs Stiftelse (KAW scholar)

  • Leif Andersson

Vetenskapsrådet (Senior professor)

  • Leif Andersson

Research Council of Norway (254774)

  • Arild Folkvord

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Han et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,324
    views
  • 537
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fan Han
  2. Minal Jamsandekar
  3. Mats E Pettersson
  4. Leyi Su
  5. Angela Fuentes-Pardo
  6. Brian Davis
  7. Dorte Bekkevold
  8. Florian Berg
  9. Michele Casini
  10. Geir Dahle
  11. Edward D Farrell
  12. Arild Folkvord
  13. Leif Andersson
(2020)
Ecological adaptation in Atlantic herring is associated with large shifts in allele frequencies at hundreds of loci
eLife 9:e61076.
https://doi.org/10.7554/eLife.61076

Share this article

https://doi.org/10.7554/eLife.61076

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Julie N Chuong, Nadav Ben Nun ... David Gresham
    Research Article

    Copy number variants (CNVs) are an important source of genetic variation underlying rapid adaptation and genome evolution. Whereas point mutation rates vary with genomic location and local DNA features, the role of genome architecture in the formation and evolutionary dynamics of CNVs is poorly understood. Previously, we found the GAP1 gene in Saccharomyces cerevisiae undergoes frequent amplification and selection in glutamine-limitation. The gene is flanked by two long terminal repeats (LTRs) and proximate to an origin of DNA replication (autonomously replicating sequence, ARS), which likely promote rapid GAP1 CNV formation. To test the role of these genomic elements on CNV-mediated adaptive evolution, we evolved engineered strains lacking either the adjacent LTRs, ARS, or all elements in glutamine-limited chemostats. Using a CNV reporter system and neural network simulation-based inference (nnSBI) we quantified the formation rate and fitness effect of CNVs for each strain. Removal of local DNA elements significantly impacts the fitness effect of GAP1 CNVs and the rate of adaptation. In 177 CNV lineages, across all four strains, between 26% and 80% of all GAP1 CNVs are mediated by Origin Dependent Inverted Repeat Amplification (ODIRA) which results from template switching between the leading and lagging strand during DNA synthesis. In the absence of the local ARS, distal ones mediate CNV formation via ODIRA. In the absence of local LTRs, homologous recombination can mediate gene amplification following de novo retrotransposon events. Our study reveals that template switching during DNA replication is a prevalent source of adaptive CNVs.