Age-related changes in Polycomb gene regulation disrupt lineage fidelity in intestinal stem cells

  1. Helen M Tauc
  2. Imilce A Rodriguez-Fernandez
  3. Jason A Hackney
  4. Michal Pawlak
  5. Tal Ronnen Oron
  6. Jerome Korzelius
  7. Hagar F Moussa
  8. Subhra Chaudhuri
  9. Zora Modrusan
  10. Bruce A Edgar
  11. Heinrich Jasper  Is a corresponding author
  1. Genentech, Inc, United States
  2. Institute of Hematology and Blood Transfusion, Poland
  3. Buck Institute for Research on Aging, United States
  4. University of Kent, United Kingdom
  5. Vienna BioCenter (VBC), Austria
  6. University of Utah, United States

Abstract

Tissue homeostasis requires long-term lineage fidelity of somatic stem cells. Whether and how age-related changes in somatic stem cells impact the faithful execution of lineage decisions remains largely unknown. Here, we address this question using genome-wide chromatin accessibility and transcriptome analysis as well as single cell RNA-seq to explore stem cell-intrinsic changes in the aging Drosophila intestine. These studies indicate that in stem cells of old flies, promoters of Polycomb (Pc) target genes become differentially accessible, resulting in the increased expression of enteroendocrine (EE) cell specification genes. Consistently, we find age-related changes in the composition of the EE progenitor cell population in aging intestines, as well as a significant increase in the proportion of EE-specified intestinal stem cells (ISCs) and progenitors in aging flies. We further confirm that Pc-mediated chromatin regulation is a critical determinant of EE cell specification in the Drosophila intestine. Pc is required to maintain expression of stem cell genes while ensuring repression of differentiation and specification genes. Our results identify Pc group proteins as central regulators of lineage identity in the intestinal epithelium and highlight the impact of age-related decline in chromatin regulation on tissue homeostasis.

Data availability

Data generated and analysed are included in the manuscript, figures and figure supplements.All sequencing data generated in this study have been deposited in GEO under accession code GSE164317.

Article and author information

Author details

  1. Helen M Tauc

    Immunology Discovery, Genentech, Inc, South San Francisco, United States
    Competing interests
    Helen M Tauc, employee of Genentech Inc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0694-2387
  2. Imilce A Rodriguez-Fernandez

    Immunology Discovery, Genentech, Inc, South San Francisco, United States
    Competing interests
    Imilce A Rodriguez-Fernandez, employee of Genentech Inc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5112-4834
  3. Jason A Hackney

    Bioinformatics, Genentech, Inc, South San Francisco, United States
    Competing interests
    Jason A Hackney, employee of Genentech Inc.
  4. Michal Pawlak

    Bioinformatics, Institute of Hematology and Blood Transfusion, Warsaw, Poland
    Competing interests
    No competing interests declared.
  5. Tal Ronnen Oron

    Bioinformatics, Buck Institute for Research on Aging, Novato, United States
    Competing interests
    No competing interests declared.
  6. Jerome Korzelius

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    Competing interests
    No competing interests declared.
  7. Hagar F Moussa

    Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3463-0126
  8. Subhra Chaudhuri

    Micro Array Lab, Genentech, Inc, South San Francisco, United States
    Competing interests
    Subhra Chaudhuri, employee of Genentech Inc.
  9. Zora Modrusan

    Microchemistry, Proteomics and Lipidomics, Genentech, Inc, South San Francisco, United States
    Competing interests
    Zora Modrusan, employee of Genentech Inc.
  10. Bruce A Edgar

    Department of Oncological Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3383-2044
  11. Heinrich Jasper

    Immunology Discovery, Genentech, Inc, South San Francisco, United States
    For correspondence
    jasper.heinrich@gene.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6014-4343

Funding

EMBO Long-Term Fellowship (ALTF 1516-2011)

  • Jerome Korzelius

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Tauc et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,531
    views
  • 563
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Helen M Tauc
  2. Imilce A Rodriguez-Fernandez
  3. Jason A Hackney
  4. Michal Pawlak
  5. Tal Ronnen Oron
  6. Jerome Korzelius
  7. Hagar F Moussa
  8. Subhra Chaudhuri
  9. Zora Modrusan
  10. Bruce A Edgar
  11. Heinrich Jasper
(2021)
Age-related changes in Polycomb gene regulation disrupt lineage fidelity in intestinal stem cells
eLife 10:e62250.
https://doi.org/10.7554/eLife.62250

Share this article

https://doi.org/10.7554/eLife.62250

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally-induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, sperm altered H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of deregulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity-effects on placenta development and function as one potential developmental route to offspring metabolic disease.

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.