Multi-step vs. single-step resistance evolution under different drugs, pharmacokinetics and treatment regimens

  1. Claudia Igler  Is a corresponding author
  2. Jens Rolff
  3. Roland Regoes  Is a corresponding author
  1. ETH Zurich, Switzerland
  2. Freie Universität Berlin, Germany

Abstract

The success of antimicrobial treatment is threatened by the evolution of drug resistance. Population genetic models are an important tool in mitigating that threat. However, most such models consider resistance emergence via a single mutational step. Here, we assembled experimental evidence that drug resistance evolution follows two patterns: i) a single mutation, which provides a large resistance benefit, or ii) multiple mutations, each conferring a small benefit, which combine to yield high-level resistance. Using stochastic modeling we then investigated the consequences of these two patterns for treatment failure and population diversity under various treatments. We find that resistance evolution is substantially limited if more than two mutations are required and that the extent of this limitation depends on the combination of drug type and pharmacokinetic profile. Further, if multiple mutations are necessary, adaptive treatment, which only suppresses the bacterial population, delays treatment failure due to resistance for a longer time than aggressive treatment, which aims at eradication.

Data availability

All data and code generated or analysed during this study are included in the manuscript and supporting files. Source code has been provided for Figures 2-4, as well as S2-S17 in the form of an R package. Source data has been provided for Table 1, Figure 1B and S1.

The following previously published data sets were used
    1. Melnyk A
    2. Wong A
    3. Kassen R
    (2015) The fitness costs of antibiotic resistance mutations
    Dryad Digital Repository: http://doi.org/10.5061/dryad.5rc47.

Article and author information

Author details

  1. Claudia Igler

    Theoretical Biology, ETH Zurich, Zurich, Switzerland
    For correspondence
    claudia.igler@env.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7777-546X
  2. Jens Rolff

    Institute for Biology, Freie Universität Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1529-5409
  3. Roland Regoes

    Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
    For correspondence
    roland.regoes@env.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8319-5293

Funding

Volkswagen Foundation (96517)

  • Claudia Igler
  • Jens Rolff
  • Roland Regoes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Igler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,724
    views
  • 518
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claudia Igler
  2. Jens Rolff
  3. Roland Regoes
(2021)
Multi-step vs. single-step resistance evolution under different drugs, pharmacokinetics and treatment regimens
eLife 10:e64116.
https://doi.org/10.7554/eLife.64116

Share this article

https://doi.org/10.7554/eLife.64116

Further reading

    1. Ecology
    2. Evolutionary Biology
    Justine Boutry, Océane Rieu ... Fréderic Thomas
    Research Article

    While host phenotypic manipulation by parasites is a widespread phenomenon, whether tumors, which can be likened to parasite entities, can also manipulate their hosts is not known. Theory predicts that this should nevertheless be the case, especially when tumors (neoplasms) are transmissible. We explored this hypothesis in a cnidarian Hydra model system, in which spontaneous tumors can occur in the lab, and lineages in which such neoplastic cells are vertically transmitted (through host budding) have been maintained for over 15 years. Remarkably, the hydras with long-term transmissible tumors show an unexpected increase in the number of their tentacles, allowing for the possibility that these neoplastic cells can manipulate the host. By experimentally transplanting healthy as well as neoplastic tissues derived from both recent and long-term transmissible tumors, we found that only the long-term transmissible tumors were able to trigger the growth of additional tentacles. Also, supernumerary tentacles, by permitting higher foraging efficiency for the host, were associated with an increased budding rate, thereby favoring the vertical transmission of tumors. To our knowledge, this is the first evidence that, like true parasites, transmissible tumors can evolve strategies to manipulate the phenotype of their host.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zach Hensel
    Short Report

    Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated ‘mutational fitness’ of substitutions, a measurement of the difference between a substitution’s observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.