Abstract

Here, we develop a simple molecular test for SARS-CoV-2 in saliva based on reverse transcription loop-mediated isothermal amplification (RT-LAMP). The test has two steps: 1) heat saliva with a stabilization solution, and 2) detect virus by incubating with a primer/enzyme mix. After incubation, saliva samples containing the SARS-CoV-2 genome turn bright yellow. Because this test is pH dependent, it can react falsely to some naturally acidic saliva samples. We report unique saliva stabilization protocols that rendered 295 healthy saliva samples compatible with the test, producing zero false positives. We also evaluated the test on 278 saliva samples from individuals who were infected with SARS-CoV-2 but had no symptoms at the time of saliva collection, and from 54 matched pairs of saliva and anterior nasal samples from infected individuals. The Saliva TwoStep test described herein identified infections with 94% sensitivity and >99% specificity in individuals with sub-clinical (asymptomatic or pre-symptomatic) infections.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Qing Yang

    Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
    Competing interests
    Qing Yang, Some of the authors of this study (NRM, QY, CLP, SLS) are founders of Darwin Biosciences, who licenses the Saliva TwoStep assay described herein..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9053-3158
  2. Nicholas R Meyerson

    Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
    Competing interests
    Nicholas R Meyerson, Some of the authors of this study (NRM, QY, CLP, SLS) are founders of Darwin Biosciences, who licenses the Saliva TwoStep assay described herein..
  3. Stephen K Clark

    BioFrontiers Institute, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  4. Camille L Paige

    BioFrontiers Institute, University of Colorado Boulder, Boulder, United States
    Competing interests
    Camille L Paige, Some of the authors of this study (NRM, QY, CLP, SLS) are founders of Darwin Biosciences, who licenses the Saliva TwoStep assay described herein..
  5. Will T Fattor

    BioFrontiers Institute, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  6. Alison R Gilchrist

    Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  7. Arturo Barbachano-Guerrero

    BioFrontiers Institute, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  8. Benjamin G Healy

    Department of Mechanical Engineering, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  9. Emma R Worden-Sapper

    Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  10. Sharon S Wu

    BioFrontiers Institute, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  11. Denise Muhlrad

    Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, United States
    Competing interests
    No competing interests declared.
  12. Carolyn J Decker

    Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, United States
    Competing interests
    No competing interests declared.
  13. Tassa K Saldi

    Integrated Physiology and Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  14. Erika Lasda

    BioFrontiers Institute, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  15. Patrick Gonzales

    Integrative Physiology, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  16. Morgan R Fink

    BioFrontiers Institute, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0567-3234
  17. Kimngan L Tat

    BioFrontiers Institute, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  18. Cole R Hager

    BioFrontiers Institute, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  19. Jack C Davis

    BioFrontiers Institute, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  20. Christopher D Ozeroff

    BioFrontiers Institute, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  21. Gloria R Brisson

    Wardenburg Health Center, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  22. Matthew B McQueen

    Integrated Physiology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
  23. Leslie A Leinwand

    BioFrontiers Institute, University of Colorado Boulder, Boulder, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1470-4810
  24. Roy Parker

    Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8412-4152
  25. Sara L Sawyer

    Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
    For correspondence
    ssawyer@colorado.edu
    Competing interests
    Sara L Sawyer, Some of the authors of this study (NRM, QY, CLP, SLS) are founders of Darwin Biosciences, who licenses the Saliva TwoStep assay described herein.Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6965-1085

Funding

Burroughs Wellcome Fund (PDEP)

  • Nicholas R Meyerson

Burroughs Wellcome Fund (PATH)

  • Sara L Sawyer

National Institutes of Health (DP1-DA-046108)

  • Sara L Sawyer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was approved by the University of Colorado Boulder Institutional Review Board. Saliva samples for assay development were collected under protocol 20-0068. Adult participants were consented verbally and donated up to 2mL of whole saliva for use as a reagent in optimization and limit of detection experiments. Data on human subjects is aggregated from University of Colorado Boulder operational COVID-19 surveillance testing activities. For this reason, the research herein did not fall under IRB purview.

Copyright

© 2021, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,037
    views
  • 386
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qing Yang
  2. Nicholas R Meyerson
  3. Stephen K Clark
  4. Camille L Paige
  5. Will T Fattor
  6. Alison R Gilchrist
  7. Arturo Barbachano-Guerrero
  8. Benjamin G Healy
  9. Emma R Worden-Sapper
  10. Sharon S Wu
  11. Denise Muhlrad
  12. Carolyn J Decker
  13. Tassa K Saldi
  14. Erika Lasda
  15. Patrick Gonzales
  16. Morgan R Fink
  17. Kimngan L Tat
  18. Cole R Hager
  19. Jack C Davis
  20. Christopher D Ozeroff
  21. Gloria R Brisson
  22. Matthew B McQueen
  23. Leslie A Leinwand
  24. Roy Parker
  25. Sara L Sawyer
(2021)
Saliva TwoStep for rapid detection of asymptomatic SARS-CoV-2 carriers
eLife 10:e65113.
https://doi.org/10.7554/eLife.65113

Share this article

https://doi.org/10.7554/eLife.65113

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    3. Epidemiology and Global Health
    4. Immunology and Inflammation
    Edited by Jos WM van der Meer et al.
    Collection

    eLife has published articles on a wide range of infectious diseases, including COVID-19, influenza, tuberculosis, HIV/AIDS, malaria and typhoid fever.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Malika Hale, Kennidy K Takehara ... Marion Pepper
    Research Article

    Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.