SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation

  1. David W Sanders
  2. Chanelle C Jumper
  3. Paul J Ackerman
  4. Dan Bracha
  5. Anita Donlic
  6. Hahn Kim
  7. Devin Kenney
  8. Ivan Castello-Serrano
  9. Saori Suzuki
  10. Tomokazu Tamura
  11. Alexander H Tavares
  12. Mohsan Saeed
  13. Alex S Holehouse
  14. Alexander Ploss
  15. Ilya Levental
  16. Florian Douam
  17. Robert F Padera
  18. Bruce D Levy
  19. Clifford P Brangwynne  Is a corresponding author
  1. Princeton University, United States
  2. Boston University, United States
  3. University of Virginia, United States
  4. Washington University School of Medicine, United States
  5. Harvard Medical School, United States

Abstract

Many enveloped viruses induce multinucleated cells (syncytia), reflective of membrane fusion events caused by the same machinery that underlies viral entry. These syncytia are thought to facilitate replication and evasion of the host immune response. Here, we report that co-culture of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those we identify in lungs of COVID-19 patients. To assess the mechanism of spike/ACE2-driven membrane fusion, we developed a microscopy-based, cell-cell fusion assay to screen ~6000 drugs and >30 spike variants. Together with quantitative cell biology approaches, the screen reveals an essential role for biophysical aspects of the membrane, particularly cholesterol-rich regions, in spike-mediated fusion, which extends to replication-competent SARS-CoV-2 isolates. Our findings potentially provide a molecular basis for positive outcomes reported in COVID-19 patients taking statins, and suggest new strategies for therapeutics targeting the membrane of SARS-CoV-2 and other fusogenic viruses.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files with the exception of raw imaging data (>400,000 Nikon ND2 files), which is not feasible to post online given its massive size (>1.5 TB). This data is available from the lead contact upon request, assuming the interested party provides a server with sufficient storage capacity. Raw data (computed fusion scores) from the drug repurposing screen is available in Supplemental File 1; bioinformatics, Supplemental File 3.

Article and author information

Author details

  1. David W Sanders

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  2. Chanelle C Jumper

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  3. Paul J Ackerman

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  4. Dan Bracha

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  5. Anita Donlic

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  6. Hahn Kim

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  7. Devin Kenney

    Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  8. Ivan Castello-Serrano

    University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  9. Saori Suzuki

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5233-6604
  10. Tomokazu Tamura

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1395-6610
  11. Alexander H Tavares

    Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  12. Mohsan Saeed

    Boston University, Boston, United States
    Competing interests
    No competing interests declared.
  13. Alex S Holehouse

    Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, United States
    Competing interests
    Alex S Holehouse, A.S.H. is a consultant for Dewpoint Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4155-5729
  14. Alexander Ploss

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9322-7252
  15. Ilya Levental

    University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  16. Florian Douam

    Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  17. Robert F Padera

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  18. Bruce D Levy

    Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  19. Clifford P Brangwynne

    Princeton University, Princeton, United States
    For correspondence
    cbrangwy@princeton.edu
    Competing interests
    Clifford P Brangwynne, C.P.B. is a scientific founder and consultant for Nereid Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1350-9960

Funding

National Institute of General Medical Sciences (GM095467)

  • Bruce D Levy

National Heart, Lung, and Blood Institute (HL122531)

  • Bruce D Levy

National Institute of General Medical Sciences (GM134949)

  • Ilya Levental

National Institute of General Medical Sciences (GM124072)

  • Ilya Levental

Howard Hughes Medical Institute

  • Clifford P Brangwynne

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Human pathology studies were performed with the approval of the Institutional Review Board at Brigham and Women's Hospital. Clinical autopsies with full anatomic dissection were performed on SARS-CoV-2 decedents by a board-certified anatomic pathologist (RFP) with appropriateinfectious precautions.

Copyright

© 2021, Sanders et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 19,039
    views
  • 1,764
    downloads
  • 177
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David W Sanders
  2. Chanelle C Jumper
  3. Paul J Ackerman
  4. Dan Bracha
  5. Anita Donlic
  6. Hahn Kim
  7. Devin Kenney
  8. Ivan Castello-Serrano
  9. Saori Suzuki
  10. Tomokazu Tamura
  11. Alexander H Tavares
  12. Mohsan Saeed
  13. Alex S Holehouse
  14. Alexander Ploss
  15. Ilya Levental
  16. Florian Douam
  17. Robert F Padera
  18. Bruce D Levy
  19. Clifford P Brangwynne
(2021)
SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation
eLife 10:e65962.
https://doi.org/10.7554/eLife.65962

Share this article

https://doi.org/10.7554/eLife.65962

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ida Marie Boisen, Nadia Krarup Knudsen ... Martin Blomberg Jensen
    Research Article

    Testicular microcalcifications consist of hydroxyapatite and have been associated with an increased risk of testicular germ cell tumors (TGCTs) but are also found in benign cases such as loss-of-function variants in the phosphate transporter SLC34A2. Here, we show that fibroblast growth factor 23 (FGF23), a regulator of phosphate homeostasis, is expressed in testicular germ cell neoplasia in situ (GCNIS), embryonal carcinoma (EC), and human embryonic stem cells. FGF23 is not glycosylated in TGCTs and therefore cleaved into a C-terminal fragment which competitively antagonizes full-length FGF23. Here, Fgf23 knockout mice presented with marked calcifications in the epididymis, spermatogenic arrest, and focally germ cells expressing the osteoblast marker Osteocalcin (gene name: Bglap, protein name). Moreover, the frequent testicular microcalcifications in mice with no functional androgen receptor and lack of circulating gonadotropins are associated with lower Slc34a2 and higher Bglap/Slc34a1 (protein name: NPT2a) expression compared with wild-type mice. In accordance, human testicular specimens with microcalcifications also have lower SLC34A2 and a subpopulation of germ cells express phosphate transporter NPT2a, Osteocalcin, and RUNX2 highlighting aberrant local phosphate handling and expression of bone-specific proteins. Mineral disturbance in vitro using calcium or phosphate treatment induced deposition of calcium phosphate in a spermatogonial cell line and this effect was fully rescued by the mineralization inhibitor pyrophosphate. In conclusion, testicular microcalcifications arise secondary to local alterations in mineral homeostasis, which in combination with impaired Sertoli cell function and reduced levels of mineralization inhibitors due to high alkaline phosphatase activity in GCNIS and TGCTs facilitate osteogenic-like differentiation of testicular cells and deposition of hydroxyapatite.

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.