Computational modeling of threat learning reveals links with anxiety and neuroanatomy in humans

  1. Rany Abend  Is a corresponding author
  2. Diana Burk
  3. Sonia G Ruiz
  4. Andrea L Gold
  5. Julia L Napoli
  6. Jennifer C Britton
  7. Kalina J Michalska
  8. Tomer Shechner
  9. Anderson M Winkler
  10. Ellen Leibenluft
  11. Daniel S Pine
  12. Bruno B Averbeck
  1. National Institute of Mental Health, United States
  2. Brown University, United States
  3. University of Miami, United States
  4. University of California, Riverside, United States
  5. University of Haifa, Israel

Abstract

Influential theories implicate variations in the mechanisms supporting threat learning in the severity of anxiety symptoms. We use computational models of associative learning in conjunction with structural imaging to explicate links among the mechanisms underlying threat learning, their neuroanatomical substrates, and anxiety severity in humans. We recorded skin-conductance data during a threat-learning task from individuals with and without anxiety disorders (N=251; 8-50 years; 116 females). Reinforcement-learning model variants quantified processes hypothesized to relate to anxiety: threat conditioning, threat generalization, safety learning, and threat extinction. We identified the best-fitting models for these processes and tested associations among latent learning parameters, whole-brain anatomy, and anxiety severity. Results indicate that greater anxiety severity related specifically to slower safety learning and slower extinction of response to safe stimuli. Nucleus accumbens gray-matter volume moderated learning-anxiety associations. Using a modeling approach, we identify computational mechanisms linking threat learning and anxiety severity and their neuroanatomical substrates.

Data availability

We cannot share the full dataset due to the NIH IRB requirements, which require participants to explicitly consent to their data being shared publicly. An important element in that is to protect patients who agree to participate in studies that relate to their psychopathology. Such consent was not acquired from most participants; as such, we cannot upload our complete dataset in its raw or deidentified form, or derivatives of the data, since we will be violating IRB protocols. Still, a subset of participants did consent to data sharing and we have uploaded their data as noted in the revised manuscript (https://github.com/rany-abend/threat_learning_eLife). Researchers interested in potentially acquiring access to the data could contact Dr. Daniel Pine (pined@mail.nih.gov), Chief of the Emotion and Development Branch at NIH, with a research proposal; as per IRB rules, the IRB may approve adding such researchers as Associate Investigators if a formal collaboration is initiated. No commercial use of the data is a lowed. The modeling and imaging analyses have now been uploaded in full as source code files.

Article and author information

Author details

  1. Rany Abend

    Emotion and Development Branch, National Institute of Mental Health, Bethesda, United States
    For correspondence
    rany.abend@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0022-3418
  2. Diana Burk

    Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sonia G Ruiz

    Emotion and Development Branch, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrea L Gold

    Department of Psychiatry and Human Behavior, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Julia L Napoli

    Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jennifer C Britton

    Department of Psychology, University of Miami, Coral Gables, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kalina J Michalska

    Department of Psychology, University of California, Riverside, Riverside, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Tomer Shechner

    Psychology Department, University of Haifa, Haifa, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Anderson M Winkler

    Emotion and Development Branch, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ellen Leibenluft

    Emotion and Development Branch, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Daniel S Pine

    Emotion and Development Branch, National Institute of Mental Health, Besthesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Bruno B Averbeck

    Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3976-8565

Funding

National Institutes of Health (ZIAMH002781-15)

  • Daniel S Pine

National Institutes of Health (R00MH091183)

  • Jennifer C Britton

Brain and Behavior Research Foundation (28239)

  • Rany Abend

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Human Subjects: Yes Ethics Statement: Written informed consent was obtained from adult (greater than or equal to 18 years) participants as we l as parents, and written assent was obtained from youth. Procedures were approved by the NIMH Institutional Review Board (protocol 01-M-0192).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,398
    views
  • 406
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rany Abend
  2. Diana Burk
  3. Sonia G Ruiz
  4. Andrea L Gold
  5. Julia L Napoli
  6. Jennifer C Britton
  7. Kalina J Michalska
  8. Tomer Shechner
  9. Anderson M Winkler
  10. Ellen Leibenluft
  11. Daniel S Pine
  12. Bruno B Averbeck
(2022)
Computational modeling of threat learning reveals links with anxiety and neuroanatomy in humans
eLife 11:e66169.
https://doi.org/10.7554/eLife.66169

Share this article

https://doi.org/10.7554/eLife.66169

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.