Sensitizing Staphylococcus aureus to antibacterial agents by decoding and blocking the lipid flippase MprF

Abstract

The pandemic of antibiotic resistance represents a major human health threat demanding new antimicrobial strategies. MprF is the synthase and flippase of the phospholipid lysyl-phosphatidylglycerol that increases virulence and resistance of methicillin-resistant Staphylococcus aureus (MRSA) and other pathogens to cationic host defense peptides and antibiotics. With the aim to design MprF inhibitors that could sensitize MRSA to antimicrobial agents and support the clearance of staphylococcal infections with minimal selection pressure, we developed MprF-targeting monoclonal antibodies, which bound and blocked the MprF flippase subunit. Antibody M-C7.1 targeted a specific loop in the flippase domain that proved to be exposed at both sides of the bacterial membrane, thereby enhancing the mechanistic understanding of bacterial lipid translocation. M-C7.1 rendered MRSA susceptible to host antimicrobial peptides and antibiotics such as daptomycin, and it impaired MRSA survival in human phagocytes. Thus, MprF inhibitors are recommended for new anti-virulence approaches against MRSA and other bacterial pathogens.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Christoph Josef Slavetinsky

    Pediatric Gastroenterology and Hepatology, Eberhard Karls University Tübingen, Tübingen, Germany
    For correspondence
    christoph.slavetinsky@med.uni-tuebingen.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5576-5906
  2. Janna Nadine Hauser

    Department of Infection Biology, Eberhard Karls University Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
  3. Cordula Gekeler

    Department of Infection Biology, Eberhard Karls University Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
  4. Jessica Slavetinsky

    Department of Infection Biology, Eberhard Karls University Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
  5. André Geyer

    Department of Infection Biology, Eberhard Karls University Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
  6. Alexandra Kraus

    MorphoSys AG, Planegg, Germany
    Competing interests
    Alexandra Kraus, Antibodies disclosed in the manuscript are part of patent Anti-staphylococcal antibodies" (US9873733B2 / EP2935324B1).
  7. Doris Heilingbrunner

    MorphoSys AG, Planegg, Germany
    Competing interests
    No competing interests declared.
  8. Samuel Wagner

    Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1808-3556
  9. Michael Tesar

    MorphoSys AG, Planegg, Germany
    Competing interests
    Michael Tesar, Antibodies disclosed in the manuscript are part of patent Anti-staphylococcal antibodies" (US9873733B2 / EP2935324B1).
  10. Bernhard Krismer

    Department of Infection Biology, Eberhard Karls University Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
  11. Sebastian Kuhn

    Department of Infection Biology, Eberhard Karls University Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
  12. Christoph M Ernst

    Department of Molecular Biology and Center for Computational and Integrative Biology, Broad Institute, Cambridge, United States
    For correspondence
    cmernst@broadinstitute.org
    Competing interests
    Christoph M Ernst, Antibodies disclosed in the manuscript are part of patent Anti-staphylococcal antibodies" (US9873733B2 / EP2935324B1).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5575-1325
  13. Andreas Peschel

    Department of Infection Biology, Eberhard Karls University Tübingen, Tuebingen, Germany
    Competing interests
    Andreas Peschel, Antibodies disclosed in the manuscript are part of patent Anti-staphylococcal antibodies" (US9873733B2 / EP2935324B1).

Funding

Deutsche Forschungsgemeinschaft (EXC-2124/1-09.001_0)

  • Christoph Josef Slavetinsky

Deutsche Forschungsgemeinschaft (EXC-2124/1-09.010_0)

  • Christoph Josef Slavetinsky

Deutsches Zentrum für Infektionsforschung (TTU 08.806)

  • Christoph Josef Slavetinsky

Deutsches Zentrum für Infektionsforschung (TTU 08.806)

  • Andreas Peschel

Deutsche Forschungsgemeinschaft (SFB 766/1-3,TP A08)

  • Andreas Peschel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Slavetinsky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,612
    views
  • 460
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christoph Josef Slavetinsky
  2. Janna Nadine Hauser
  3. Cordula Gekeler
  4. Jessica Slavetinsky
  5. André Geyer
  6. Alexandra Kraus
  7. Doris Heilingbrunner
  8. Samuel Wagner
  9. Michael Tesar
  10. Bernhard Krismer
  11. Sebastian Kuhn
  12. Christoph M Ernst
  13. Andreas Peschel
(2022)
Sensitizing Staphylococcus aureus to antibacterial agents by decoding and blocking the lipid flippase MprF
eLife 11:e66376.
https://doi.org/10.7554/eLife.66376

Share this article

https://doi.org/10.7554/eLife.66376

Further reading

    1. Microbiology and Infectious Disease
    Ziyu Wen, Pingchao Li ... Caijun Sun
    Research Article

    The persistence of latent viral reservoirs remains the major obstacle to eradicating human immunodeficiency virus (HIV). We herein found that ICP34.5 can act as an antagonistic factor for the reactivation of HIV latency by herpes simplex virus type I (HSV-1), and thus recombinant HSV-1 with ICP34.5 deletion could more effectively reactivate HIV latency than its wild-type counterpart. Mechanistically, HSV-ΔICP34.5 promoted the phosphorylation of HSF1 by decreasing the recruitment of protein phosphatase 1 (PP1α), thus effectively binding to the HIV LTR to reactivate the latent reservoirs. In addition, HSV-ΔICP34.5 enhanced the phosphorylation of IKKα/β through the degradation of IκBα, leading to p65 accumulation in the nucleus to elicit NF-κB pathway-dependent reactivation of HIV latency. Then, we constructed the recombinant HSV-ΔICP34.5 expressing simian immunodeficiency virus (SIV) env, gag, or the fusion antigen sPD1-SIVgag as a therapeutic vaccine, aiming to achieve a functional cure by simultaneously reactivating viral latency and eliciting antigen-specific immune responses. Results showed that these constructs effectively elicited SIV-specific immune responses, reactivated SIV latency, and delayed viral rebound after the interruption of antiretroviral therapy (ART) in chronically SIV-infected rhesus macaques. Collectively, these findings provide insights into the rational design of HSV-vectored therapeutic strategies for pursuing an HIV functional cure.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.