HIV status alters disease severity and immune cell responses in beta variant SARS-CoV-2 infection wave

  1. Farina Karim
  2. Inbal Gazy
  3. Sandile Cele
  4. Yenzekile Zungu
  5. Robert Krause
  6. Mallory Bernstein
  7. Khadija Khan
  8. Yashica Ganga
  9. Hylton Errol Rodel
  10. Ntombifuthi Mthabela
  11. Matilda Mazibuko
  12. Daniel Muema
  13. Dirhona Ramjit
  14. Thumbi Ndung'u
  15. Willem Hanekom
  16. Bernadett Gosnell
  17. Richard J Lessells
  18. Emily B Wong
  19. Tulio de Oliveira
  20. Yunus Moosa
  21. Gil Lustig
  22. Alasdair Leslie  Is a corresponding author
  23. Henrik Kløverpris  Is a corresponding author
  24. Alex Sigal  Is a corresponding author
  1. Africa Health Research Institute, South Africa
  2. University of KwaZulu-Natal, South Africa
  3. Africa Health Research Institute; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, South Africa
  4. Africa Health Research Institute; Division of Infection and Immunity, University College London, South Africa
  5. Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, South Africa
  6. KwaZulu-Natal Research Institute for TB-HIV, South Africa
  7. University of KwaZulu-Natal,SA, South Africa
  8. Centre for the AIDS Programme of Research in South Africa, South Africa
  9. African Health Research Institute, South Africa
  10. Africa Health Research Institute, University of KwaZulu-Natal, South Africa

Abstract

There are conflicting reports on the effects of HIV on COVID-19. Here we analyzed disease severity and immune cell changes during and after SARS-CoV-2 infection in 236 participants from South Africa, of which 39% were people living with HIV (PLWH), during the first and second (beta dominated) infection waves. The second wave had more PLWH requiring supplemental oxygen relative to HIV negative participants. Higher disease severity was associated with low CD4 T cell counts and higher neutrophil to lymphocyte ratios (NLR). Yet, CD4 counts recovered and NLR stabilized after SARS-CoV-2 clearance in wave 2 infected PLWH, arguing for an interaction between SARS-CoV-2 and HIV infection leading to low CD4 and high NLR. The first infection wave, where severity in HIV negative and PLWH was similar, still showed some HIV modulation of SARS-CoV-2 immune responses. Therefore, HIV infection can synergize with the SARS-CoV-2 variant to change COVID-19 outcomes.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Farina Karim

    Division of Clinical Studies, Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  2. Inbal Gazy

    University of KwaZulu-Natal, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandile Cele

    Systems Infection Biology, Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  4. Yenzekile Zungu

    Africa Health Research Institute, Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert Krause

    Africa Health Research Institute, Africa Health Research Institute; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  6. Mallory Bernstein

    Africa Health Research Institute, Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  7. Khadija Khan

    Division of Clinical Studies, Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  8. Yashica Ganga

    Africa Health Research Institute, Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  9. Hylton Errol Rodel

    Systems Infection Biology, Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  10. Ntombifuthi Mthabela

    Africa Health Research Institute, Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  11. Matilda Mazibuko

    Africa Health Research Institute, Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  12. Daniel Muema

    Africa Health Research Institute; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Africa Health Research Institute; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  13. Dirhona Ramjit

    Africa Health Research Institute, Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  14. Thumbi Ndung'u

    Africa Health Research Institute, Africa Health Research Institute, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2962-3992
  15. Willem Hanekom

    Africa Health Research Institute; Division of Infection and Immunity, University College London, Africa Health Research Institute; Division of Infection and Immunity, University College London, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  16. Bernadett Gosnell

    Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durbans, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  17. Richard J Lessells

    University of KwaZulu-Natal, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0926-710X
  18. Emily B Wong

    KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  19. Tulio de Oliveira

    School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal,SA, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  20. Yunus Moosa

    Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  21. Gil Lustig

    Centre for the AIDS Programme of Research in South Africa, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  22. Alasdair Leslie

    African Health Research Institute, Durban, South Africa
    For correspondence
    Al.Leslie@ahri.org
    Competing interests
    The authors declare that no competing interests exist.
  23. Henrik Kløverpris

    Africa Health Research Institute, Africa Health Research Institute, Durban, South Africa
    For correspondence
    Henrik.Kloverpris@ahri.org
    Competing interests
    The authors declare that no competing interests exist.
  24. Alex Sigal

    School of Laboratory Medicine and Medical Sciences, Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
    For correspondence
    alex.sigal@ahri.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8571-2004

Funding

Bill and Melinda Gates Foundation (INV-018944)

  • Alex Sigal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study protocol was approved by the University of KwaZulu-Natal Institutional Review Board (approval BREC/00001275/2020). Adult patients ($>$18 years old) presenting either at King Edward VIII or Clairwood Hospitals in Durban, South Africa, between 8 June to 25 September 2020, diagnosed to be SARS-CoV-2 positive as part of their clinical workup and able to provide informed consent were eligible for the study. Written informed consent was obtained for all enrolled participants.

Copyright

© 2021, Karim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,384
    views
  • 254
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Farina Karim
  2. Inbal Gazy
  3. Sandile Cele
  4. Yenzekile Zungu
  5. Robert Krause
  6. Mallory Bernstein
  7. Khadija Khan
  8. Yashica Ganga
  9. Hylton Errol Rodel
  10. Ntombifuthi Mthabela
  11. Matilda Mazibuko
  12. Daniel Muema
  13. Dirhona Ramjit
  14. Thumbi Ndung'u
  15. Willem Hanekom
  16. Bernadett Gosnell
  17. Richard J Lessells
  18. Emily B Wong
  19. Tulio de Oliveira
  20. Yunus Moosa
  21. Gil Lustig
  22. Alasdair Leslie
  23. Henrik Kløverpris
  24. Alex Sigal
(2021)
HIV status alters disease severity and immune cell responses in beta variant SARS-CoV-2 infection wave
eLife 10:e67397.
https://doi.org/10.7554/eLife.67397

Share this article

https://doi.org/10.7554/eLife.67397

Further reading

    1. Microbiology and Infectious Disease
    Carley N Gray, Manickam Ashokkumar ... Michael Emerman
    Research Article

    The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing toward inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells of people living with HIV (PLWH). We performed a CRISPR screen in conjunction with AZD5582 & I-BET151 and identified a member of the Integrator complex as a target to improve this LRA combination, specifically Integrator complex subunit 12 (INTS12). Integrator functions as a genome-wide attenuator of transcription that acts on elongation through its RNA cleavage and phosphatase modules. Knockout of INTS12 improved latency reactivation at the transcriptional level and is more specific to the HIV-1 provirus than AZD5582 & I-BET151 treatment alone. We found that INTS12 is present on chromatin at the promoter of HIV and therefore its effect on HIV may be direct. Additionally, we observed more RNAPII in the gene body of HIV only with the combination of INTS12 knockout with AZD5582 & I-BET151, indicating that INTS12 induces a transcriptional elongation block to viral reactivation. Moreover, knockout of INTS12 increased HIV-1 reactivation in CD4 T cells from virally suppressed PLWH ex vivo, and we detected viral RNA in the supernatant from CD4 T cells of all three virally suppressed PLWH tested upon INTS12 knockout, suggesting that INTS12 prevents full-length HIV RNA production in primary T cells. Finally, we found that INTS12 more generally limits the efficacy of a variety of LRAs with different mechanisms of action.

    1. Microbiology and Infectious Disease
    McKenna Harpring, Junghoon Lee ... John V Cox
    Research Article

    Chlamydia trachomatis serovar L2 (Ct), an obligate intracellular bacterium that does not encode FtsZ, divides by a polarized budding process. In the absence of FtsZ, we show that FtsK, a chromosomal translocase, is critical for divisome assembly in Ct. Chlamydial FtsK forms discrete foci at the septum and at the base of the progenitor mother cell, and our data indicate that FtsK foci at the base of the mother cell mark the location of nascent divisome complexes that form at the site where a daughter cell will emerge in the next round of division. The divisome in Ct has a hybrid composition, containing elements of the divisome and elongasome from other bacteria, and FtsK is recruited to nascent divisomes prior to the other chlamydial divisome proteins assayed, including the PBP2 and PBP3 transpeptidases, and MreB and MreC. Knocking down FtsK prevents divisome assembly in Ct and inhibits cell division and septal peptidoglycan synthesis. We further show that MreB does not function like FtsZ and serve as a scaffold for the assembly of the Ct divisome. Rather, MreB is one of the last proteins recruited to the chlamydial divisome, and it is necessary for the formation of septal peptidoglycan rings. Our studies illustrate the critical role of chlamydial FtsK in coordinating divisome assembly and peptidoglycan synthesis in this obligate intracellular bacterial pathogen.