Generation of a CRF1-Cre transgenic rat and the role of central amygdala CRF1 cells in nociception and anxiety-like behavior

  1. Marcus M Weera  Is a corresponding author
  2. Abigail E Agoglia
  3. Eliza Douglass
  4. Zhiying Jiang
  5. Shivakumar Rajamanickam
  6. Rosetta S Shackett
  7. Melissa Herman
  8. Nicholas J Justice
  9. Nicholas W Gilpin
  1. Louisiana State University Health Sciences Center New Orleans, United States
  2. University of North Carolina at Chapel Hill, United States
  3. The University of Texas Health Science Center, United States

Abstract

Corticotropin-releasing factor type-1 (CRF1) receptors are critical to stress responses because they allow neurons to respond to CRF released in response to stress. Our understanding of the precise role of CRF1-expressing neuronal populations in CRF-mediated behaviors has been largely limited to mouse experiments due to the lack of genetic tools available to selectively visualize and manipulate CRF1+ cells in rats. Here, we describe the generation and validation of a transgenic CRF1-Cre-tdTomato rat, which expresses a bicistronic iCre-2A-tdTomato transgene directed by 200kb of promoter and enhancer sequence surrounding the Crhr1 cDNA present within a BAC clone, that has been transgenically inserted into the rat genome. We report that Crhr1 and Cre mRNA expression are highly colocalized in CRF1-Cre-tdTomato rats within both the central amygdala (CeA), composed of mostly GABAergic neurons, and in the basolateral amygdala (BLA), composed of mostly glutamatergic neurons. In the CeA, membrane properties, inhibitory synaptic transmission, and responses to CRF bath application in tdTomato+ neurons are similar to those previously reported in GFP+ cells in CRFR1-GFP mice. We show that stimulatory DREADD receptors can be selectively targeted to CeA CRF1+ cells via virally delivered Cre-dependent transgenes, that transfected Cre/tdTomato+ cells are activated by clozapine-n-oxide in vitro and in vivo, and that activation of these cells in vivo increases anxiety-like behavior and nocifensive responses. Outside the amygdala, we show that Cre-tdTomato is expressed in several brain areas across the rostrocaudal axis of the CRF1-Cre-tdTomato rat brain, and that the expression pattern of Cre-tdTomato cells is similar to the known expression pattern of CRF1 cells. Given the accuracy of expression in the CRF1-Cre rat, modern genetic techniques used to investigate the anatomy, physiology, and behavioral function of CRF1+ neurons and circuits can now be performed in assays that require the use of rats as the model organism.

Data availability

All data generated during this study are included in the manuscript.

Article and author information

Author details

  1. Marcus M Weera

    Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, United States
    For correspondence
    mweera@lsuhsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2451-0350
  2. Abigail E Agoglia

    Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eliza Douglass

    Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhiying Jiang

    Institute Of Molecular Medicine, The University of Texas Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shivakumar Rajamanickam

    Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rosetta S Shackett

    Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Melissa Herman

    Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Nicholas J Justice

    Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nicholas W Gilpin

    Department of Physiology, Louisiana State University Health Sciences Center New Orleans, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8901-8917

Funding

National Institute on Alcohol Abuse and Alcoholism (R01,AA023305)

  • Nicholas W Gilpin

National Institute on Alcohol Abuse and Alcoholism (R21,AA026022)

  • Melissa Herman
  • Nicholas W Gilpin

National Institute on Alcohol Abuse and Alcoholism (R00,AA023002)

  • Melissa Herman

National Institute on Alcohol Abuse and Alcoholism (National Research Service Award,AA027145)

  • Marcus M Weera

National Institute on Alcohol Abuse and Alcoholism (Institutional Training Grant,AA007577)

  • Marcus M Weera

United States Department of Veterans Affairs (Merit Award,#I01 BX003451)

  • Nicholas W Gilpin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were conducted in accordance with recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, and were approved by the Institutional Animal Care and Use Committee of the respective institutions at which procedures occurred (Louisiana State University Health Sciences Center, University of North Carolina - Chapel Hill, University of Texas Health Sciences Center). (LSUHSC IACUC Protocol #3749; UNC IACUC Protocol #19-190; UTHSC IACUC Protocol #21-075)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marcus M Weera
  2. Abigail E Agoglia
  3. Eliza Douglass
  4. Zhiying Jiang
  5. Shivakumar Rajamanickam
  6. Rosetta S Shackett
  7. Melissa Herman
  8. Nicholas J Justice
  9. Nicholas W Gilpin
(2022)
Generation of a CRF1-Cre transgenic rat and the role of central amygdala CRF1 cells in nociception and anxiety-like behavior
eLife 11:e67822.
https://doi.org/10.7554/eLife.67822

Share this article

https://doi.org/10.7554/eLife.67822

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.