Multiple introductions of multidrug-resistant typhoid associated with acute infection and asymptomatic carriage, Kenya

  1. Samuel Kariuki  Is a corresponding author
  2. Zoe A Dyson
  3. Cecilia Mbae
  4. Ronald Ngetich
  5. Susan M Kavai
  6. Celestine Wairimu
  7. Stephen Anyona
  8. Naomi Gitau
  9. Robert Sanaya Onsare
  10. Beatrice Ongandi
  11. Sebastian Duchene
  12. Mohamed Ali
  13. John David Clemens
  14. Kathryn E Holt
  15. Gordon Dougan
  1. Kenya Medical Research Institute, Kenya
  2. Monash University, Australia
  3. The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Australia
  4. John Hopkins University, United States
  5. International Diarrheal Diseases Research Centre, Bangladesh
  6. University of Cambridge, United Kingdom

Abstract

Background: Understanding the dynamics of infection and carriage of typhoid in endemic settings is critical to finding solutions to prevention and control.

Methods: In a 3 year case-control study, we investigated typhoid among children aged <16 years (4,670 febrile cases and 8,549 age matched controls) living in an informal settlement, Nairobi, Kenya.

Results: 148 S. Typhi isolates from cases and 95 from controls (stool culture) were identified; a carriage frequency of 1%. Whole-genome sequencing showed 97% of cases and 88% of controls were genotype 4.3.1 (Haplotype 58), with the majority of each (76% and 88%) being multidrug-resistant strains in 3 sublineages of H58 genotype (East Africa 1 (EA1), EA2, and EA3), with sequences from cases and carriers intermingled.

Conclusions: The high rate of multidrug-resistant H58 S.Typhi, and the close phylogenetic relationships between cases and controls, provides evidence for the role of carriers as a reservoir for the community spread of typhoid in this setting.

Funding: National Institutes of Health (R01AI099525); Wellcome Trust (106158/Z/14/Z); European Commission (TyphiNET No 845681); National Institute for Health Research (NIHR); Bill and Melinda Gates Foundation (OPP1175797).

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.Raw Illumina sequence reads have been submitted to the European Nucleotide Archive (ENA) under accession PRJEB19289. Individual sequence accession numbers are listed in Table S1

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Samuel Kariuki

    Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
    For correspondence
    samkariuki2@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3209-9503
  2. Zoe A Dyson

    Department of Infectious Diseases, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Cecilia Mbae

    Microbiology, Kenya Medical Research Institute, Nairobi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  4. Ronald Ngetich

    Microbiology, Kenya Medical Research Institute, Nairobi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  5. Susan M Kavai

    Microbiology, Kenya Medical Research Institute, Nairobi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  6. Celestine Wairimu

    Microbiology, Kenya Medical Research Institute, Nairobi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephen Anyona

    Microbiology, Kenya Medical Research Institute, Nairobi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  8. Naomi Gitau

    Microbiology, Kenya Medical Research Institute, Nairobi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  9. Robert Sanaya Onsare

    Microbiology, Kenya Medical Research Institute, Nairobi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  10. Beatrice Ongandi

    Microbiology, Kenya Medical Research Institute, Nairobi, Kenya
    Competing interests
    The authors declare that no competing interests exist.
  11. Sebastian Duchene

    Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Mohamed Ali

    Department of International Health, John Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. John David Clemens

    International Diarrheal Diseases Research Centre, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
  14. Kathryn E Holt

    Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. Gordon Dougan

    Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01AI099525)

  • Samuel Kariuki

Wellcome Trust (106158/Z/14/Z)

  • Zoe A Dyson

European Commission (TyphiNET No 845681)

  • Zoe A Dyson

National Institute for Health Research (AMR Theme)

  • Gordon Dougan

Bill and Melinda Gates Foundation (OPP1175797)

  • Kathryn E Holt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the Scientific and Ethics Review Unit (SERU) of the Kenya Medical Research Institute (KEMRI) (Scientific Steering Committee No. 2076). All parents and/or guardians of participating children were informed of the study objectives and voluntary written consent was sought and obtained before inclusion.

Copyright

© 2021, Kariuki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,490
    views
  • 195
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel Kariuki
  2. Zoe A Dyson
  3. Cecilia Mbae
  4. Ronald Ngetich
  5. Susan M Kavai
  6. Celestine Wairimu
  7. Stephen Anyona
  8. Naomi Gitau
  9. Robert Sanaya Onsare
  10. Beatrice Ongandi
  11. Sebastian Duchene
  12. Mohamed Ali
  13. John David Clemens
  14. Kathryn E Holt
  15. Gordon Dougan
(2021)
Multiple introductions of multidrug-resistant typhoid associated with acute infection and asymptomatic carriage, Kenya
eLife 10:e67852.
https://doi.org/10.7554/eLife.67852

Share this article

https://doi.org/10.7554/eLife.67852

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Felix Lankester, Tito J Kibona ... Sarah Cleaveland
    Research Article

    Lack of data on the aetiology of livestock diseases constrains effective interventions to improve livelihoods, food security and public health. Livestock abortion is an important disease syndrome affecting productivity and public health. Several pathogens are associated with livestock abortions but across Africa surveillance data rarely include information from abortions, little is known about aetiology and impacts, and data are not available to inform interventions. This paper describes outcomes from a surveillance platform established in Tanzania spanning pastoral, agropastoral and smallholder systems to investigate causes and impacts of livestock abortion. Abortion events were reported by farmers to livestock field officers (LFO) and on to investigation teams. Events were included if the research team or LFO could attend within 72 hr. If so, samples and questionnaire data were collected to investigate (a) determinants of attribution; (b) patterns of events, including species and breed, previous abortion history, and seasonality; (c) determinants of reporting, investigation and attribution; (d) cases involving zoonotic pathogens. Between 2017–2019, 215 events in cattle (n=71), sheep (n=44), and goats (n=100) were investigated. Attribution, achieved for 19.5% of cases, was significantly affected by delays in obtaining samples. Histopathology proved less useful than PCR due to rapid deterioration of samples. Vaginal swabs provided practical and sensitive material for pathogen detection. Livestock abortion surveillance, even at a small scale, can generate valuable information on causes of disease outbreaks, reproductive losses and can identify pathogens not easily captured through other forms of livestock disease surveillance. This study demonstrated the feasibility of establishing a surveillance system, achieved through engagement of community-based field officers, establishment of practical sample collection and application of molecular diagnostic platforms.

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Tianyu Zhao, Hui Li ... Li Chen
    Research Article

    Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.