PBN-PVT projections modulate negative affective states in mice

  1. Ya-Bing Zhu
  2. Yan Wang
  3. Xiao-Xiao Hua
  4. Ling Xu
  5. Ming-Zhe Liu
  6. Rui Zhang
  7. Peng-Fei Liu
  8. Jin-Bao Li
  9. Ling Zhang  Is a corresponding author
  10. Di Mu  Is a corresponding author
  1. Shanghai Jiao Tong University School of Medicine, China
  2. Tongji University School of Medicine, China
  3. The First Affiliated Hospital of Guangzhou Medical University, China

Abstract

Long-lasting negative affections dampen enthusiasm for life, and dealing with negative affective states is essential for individual survival. The parabrachial nucleus (PBN) and thalamic paraventricular nucleus (PVT) are critical for modulating affective states in mice. However, the functional roles of PBN-PVT projections in modulating affective states remain elusive. Here, we show that PBN neurons send dense projection fibers to the PVT and form direct excitatory synapses with PVT neurons. Activation of the PBN-PVT pathway induces robust behaviors associated with negative affective states without affecting nociceptive behaviors. Inhibition of the PBN-PVT pathway reduces aversion-like and fear-like behaviors. Furthermore, the PVT neurons innervated by the PBN are activated by aversive stimulation, and activation of PBN-PVT projections enhances the neuronal activity of PVT neurons in response to the aversive stimulus. Consistently, activation of PVT neurons that received PBN-PVT projections induces anxiety-like behaviors. Thus, our study indicates that PBN-PVT projections modulate negative affective states in mice.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file. The behavioral data and imaging analysis results have been made available on Dryad Digital Repository (https://doi:10.5061/dryad.1rn8pk0w4). All MATLAB code has been deposited at: https://github.com/laizishangalali/Xiang/blob/main/zscore_KS_test.m and is publicly available.

The following data sets were generated

Article and author information

Author details

  1. Ya-Bing Zhu

    Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yan Wang

    Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiao-Xiao Hua

    Tongji University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ling Xu

    Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ming-Zhe Liu

    Department of Respiratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Rui Zhang

    Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Peng-Fei Liu

    Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jin-Bao Li

    Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Ling Zhang

    Tongji University School of Medicine, Shanghai, China
    For correspondence
    lzhang0808@tongji.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  10. Di Mu

    Department of Anesthesiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    For correspondence
    damonmu@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1209-9311

Funding

National Natural Science Foundation of China (31900717)

  • Di Mu

China Association for Science and Technology (2019QNRC001)

  • Di Mu

Shanghai Association for Science and Technology (19YF1438700)

  • Di Mu

National Natural Science Foundation of China (31571086)

  • Ling Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiment procedures were approved by the Animal Care and Use Committee of Shanghai General Hospital (2019AW008).

Copyright

© 2022, Zhu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,376
    views
  • 551
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ya-Bing Zhu
  2. Yan Wang
  3. Xiao-Xiao Hua
  4. Ling Xu
  5. Ming-Zhe Liu
  6. Rui Zhang
  7. Peng-Fei Liu
  8. Jin-Bao Li
  9. Ling Zhang
  10. Di Mu
(2022)
PBN-PVT projections modulate negative affective states in mice
eLife 11:e68372.
https://doi.org/10.7554/eLife.68372

Share this article

https://doi.org/10.7554/eLife.68372

Further reading

    1. Neuroscience
    David Oestreicher, Shashank Chepurwar ... Tina Pangrsic
    Research Article

    To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their CaV1.3 calcium channels. Mutations in the CABP2 gene underlie non-syndromic autosomal recessive hearing loss DFNB93. Besides CaBP2, the structurally related CaBP1 is highly abundant in the IHCs. Here, we investigated how the two CaBPs cooperatively regulate IHC synaptic function. In Cabp1/2 double-knockout mice, we find strongly enhanced CaV1.3 inactivation, slowed recovery from inactivation and impaired sustained exocytosis. Already mild IHC activation further reduces the availability of channels to trigger synaptic transmission and may effectively silence synapses. Spontaneous and sound-evoked responses of spiral ganglion neurons in vivo are strikingly reduced and strongly depend on stimulation rates. Transgenic expression of CaBP2 leads to substantial recovery of IHC synaptic function and hearing sensitivity. We conclude that CaBP1 and 2 act together to suppress voltage- and calcium-dependent inactivation of IHC CaV1.3 channels in order to support sufficient rate of exocytosis and enable fast, temporally precise and indefatigable sound encoding.

    1. Neuroscience
    Lina María Jaime Tobón, Tobias Moser
    Research Article

    Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca2+ channels. The postsynaptic SGNs differ in their spontaneous firing rates, sound thresholds, and operating ranges. While a causal relationship between synaptic heterogeneity and neural response diversity seems likely, experimental evidence linking synaptic and SGN physiology has remained difficult to obtain. Here, we aimed at bridging this gap by ex vivo paired recordings of murine IHCs and postsynaptic SGN boutons with stimuli and conditions aimed to mimic those of in vivo SGN characterization. Synapses with high spontaneous rate of release (SR) were found predominantly on the pillar side of the IHC. These high SR synapses had larger and more temporally compact spontaneous EPSCs, lower voltage thresholds, tighter coupling of Ca2+ channels and vesicular release sites, shorter response latencies, and higher initial release rates. This study indicates that synaptic heterogeneity in IHCs directly contributes to the diversity of spontaneous and sound-evoked firing of SGNs.