Abstract

Flaviviruses, including Zika virus (ZIKV), are a significant global health concern, yet no licensed antivirals exist to treat disease. The small Membrane (M) protein plays well-defined roles during viral egress and remains within virion membranes following release and maturation. However, it is unclear whether M plays a functional role in this setting. Here, we show that M forms oligomeric membrane-permeabilising channels in vitro, with increased activity at acidic pH and sensitivity to the prototypic channel-blocker, rimantadine. Accordingly, rimantadine blocked an early stage of ZIKV cell culture infection. Structure-based channel models, comprising hexameric arrangements of two trans-membrane domain protomers were shown to comprise more stable assemblages than other oligomers using molecular dynamics (MD) simulations. Models contained a predicted lumenal rimantadine binding site, as well as a second druggable target region on the membrane-exposed periphery. In silico screening enriched for repurposed drugs/compounds predicted to bind to either one site or the other. Hits displayed superior potency in vitro and in cell culture compared with rimantadine, with efficacy demonstrably linked to virion-resident channels. Finally, rimantadine effectively blocked ZIKV viraemia in preclinical models, supporting that M constitutes a physiologically relevant target. This could be explored by repurposing rimantadine, or development of new M-targeted-therapies.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files; access to MD data and molecular models may be requested and, if accepted, accessed via MTA. Raw simulation data can be accessed via the Leeds Data Repository (https://archive.researchdata.leeds.ac.uk/) at the following DOI: https://doi.org/10.5518/1505

The following data sets were generated

Article and author information

Author details

  1. Emma Brown

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Gemma Swinscoe

    School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniella A Lefteri

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9985-4254
  4. Ravi Singh

    School of Chemistry, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4344-4085
  5. Amy Moran

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Rebecca F Thompson

    Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Maskell

    School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Hannah Beaumont

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew J Bentham

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Claire Donald

    Institute of infection, immunity and inflammation, MRC University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Alain Kohl

    Institute of infection, immunity and inflammation, MRC University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Andrew Macdonald

    Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Neil A Ranson

    Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Richard Foster

    School of Chemistry, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Clive S McKimmie

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Antreas C Kalli

    Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7156-9403
  17. Stephen Griffin

    Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
    For correspondence
    s.d.c.griffin@leeds.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7233-5243

Funding

Medical Research Council (G0700124)

  • Matthew J Bentham
  • Stephen Griffin

University of Leeds (LIMR Studentship)

  • Emma Brown
  • Richard Foster
  • Clive S McKimmie
  • Antreas C Kalli
  • Stephen Griffin

Medical Research Council (MC_UU_12014/8)

  • Claire Donald
  • Alain Kohl

Medical Research Council (MR/N017552/1)

  • Claire Donald
  • Alain Kohl

University of Leeds (LIMR Studentship)

  • Daniella A Lefteri
  • Clive S McKimmie
  • Stephen Griffin

Medical Research Council (MR/T016205/1)

  • Amy Moran
  • Stephen Griffin

UK Research and Innovation (Impact Acceleration Account ( IAA))

  • Gemma Swinscoe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Procedures were carried out in accordance with the United Kingdom Home Office regulations under the authority of the appropriate project and personal license (awarded to CSM, and CSM/DL respectively).

Copyright

© 2024, Brown et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 607
    views
  • 137
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emma Brown
  2. Gemma Swinscoe
  3. Daniella A Lefteri
  4. Ravi Singh
  5. Amy Moran
  6. Rebecca F Thompson
  7. Daniel Maskell
  8. Hannah Beaumont
  9. Matthew J Bentham
  10. Claire Donald
  11. Alain Kohl
  12. Andrew Macdonald
  13. Neil A Ranson
  14. Richard Foster
  15. Clive S McKimmie
  16. Antreas C Kalli
  17. Stephen Griffin
(2024)
Inhibitors of the small membrane (M) protein viroporin prevent Zika virus infection
eLife 13:e68404.
https://doi.org/10.7554/eLife.68404

Share this article

https://doi.org/10.7554/eLife.68404

Further reading

    1. Microbiology and Infectious Disease
    2. Neuroscience
    Aleksandra Prochera, Anoohya N Muppirala ... Meenakshi Rao
    Research Article

    Glial cells of the enteric nervous system (ENS) interact closely with the intestinal epithelium and secrete signals that influence epithelial cell proliferation and barrier formation in vitro. Whether these interactions are important in vivo, however, is unclear because previous studies reached conflicting conclusions (Prochera and Rao, 2023). To better define the roles of enteric glia in steady state regulation of the intestinal epithelium, we characterized the glia in closest proximity to epithelial cells and found that the majority express the gene Proteolipid protein 1 (PLP1) in both mice and humans. To test their functions using an unbiased approach, we genetically depleted PLP1+ cells in mice and transcriptionally profiled the small and large intestines. Surprisingly, glial loss had minimal effects on transcriptional programs and the few identified changes varied along the gastrointestinal tract. In the ileum, where enteric glia had been considered most essential for epithelial integrity, glial depletion did not drastically alter epithelial gene expression but caused a modest enrichment in signatures of Paneth cells, a secretory cell type important for innate immunity. In the absence of PLP1+ glia, Paneth cell number was intact, but a subset appeared abnormal with irregular and heterogenous cytoplasmic granules, suggesting a secretory deficit. Consistent with this possibility, ileal explants from glial-depleted mice secreted less functional lysozyme than controls with corresponding effects on fecal microbial composition. Collectively, these data suggest that enteric glia do not exert broad effects on the intestinal epithelium but have an essential role in regulating Paneth cell function and gut microbial ecology.

    1. Microbiology and Infectious Disease
    Carley N Gray, Manickam Ashokkumar ... Michael Emerman
    Research Article

    The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing toward inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells of people living with HIV (PLWH). We performed a CRISPR screen in conjunction with AZD5582 & I-BET151 and identified a member of the Integrator complex as a target to improve this LRA combination, specifically Integrator complex subunit 12 (INTS12). Integrator functions as a genome-wide attenuator of transcription that acts on elongation through its RNA cleavage and phosphatase modules. Knockout of INTS12 improved latency reactivation at the transcriptional level and is more specific to the HIV-1 provirus than AZD5582 & I-BET151 treatment alone. We found that INTS12 is present on chromatin at the promoter of HIV and therefore its effect on HIV may be direct. Additionally, we observed more RNAPII in the gene body of HIV only with the combination of INTS12 knockout with AZD5582 & I-BET151, indicating that INTS12 induces a transcriptional elongation block to viral reactivation. Moreover, knockout of INTS12 increased HIV-1 reactivation in CD4 T cells from virally suppressed PLWH ex vivo, and we detected viral RNA in the supernatant from CD4 T cells of all three virally suppressed PLWH tested upon INTS12 knockout, suggesting that INTS12 prevents full-length HIV RNA production in primary T cells. Finally, we found that INTS12 more generally limits the efficacy of a variety of LRAs with different mechanisms of action.