Correlative all-optical quantification of mass density and mechanics of sub-cellular compartments with fluorescence specificity

  1. Raimund Schlüßler  Is a corresponding author
  2. Kyoohyun Kim  Is a corresponding author
  3. Martin Nötzel
  4. Anna Taubenberger
  5. Shada Abuhattum
  6. Timon Beck
  7. Paul Müller
  8. Shovamaye Maharana
  9. Gheorghe Cojoc
  10. Salvatore Girardo
  11. Andreas Hermann
  12. Simon Alberti
  13. Jochen Guck  Is a corresponding author
  1. Technische Universität Dresden, Germany
  2. Max Planck Institute for the Science of Light, Germany
  3. University of Rostock, Germany

Abstract

Quantitative measurements of physical parameters become increasingly important for understanding biological processes. Brillouin microscopy (BM) has recently emerged as one technique providing the 3D distribution of viscoelastic properties inside biological samples - so far relying on the implicit assumption that refractive index (RI) and density can be neglected. Here, we present a novel method (FOB microscopy) combining BM with optical diffraction tomography and epi-fluorescence imaging for explicitly measuring the Brillouin shift, RI and absolute density with specificity to fluorescently labeled structures. We show that neglecting the RI and density might lead to erroneous conclusions. Investigating the nucleoplasm of wild-type HeLa cells, we find that it has lower density but higher longitudinal modulus than the cytoplasm. Thus, the longitudinal modulus is not merely sensitive to the water content of the sample - a postulate vividly discussed in the field. We demonstrate the further utility of FOB on various biological systems including adipocytes and intracellular membraneless compartments. FOB microscopy can provide unexpected scientific discoveries and shed quantitative light on processes such as phase separation and transition inside living cells.

Data availability

The data sets generated during and/or analyzed during the current study are available from figshare under the following link: https://doi.org/10.6084/m9.figshare.c.5347778

The following data sets were generated

Article and author information

Author details

  1. Raimund Schlüßler

    Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
    For correspondence
    raimund.schluessler@tu-dresden.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3752-2382
  2. Kyoohyun Kim

    Biological Optomechanics, Max Planck Institute for the Science of Light, Erlangen, Germany
    For correspondence
    kyoohyun.kim@mpl.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1808-775X
  3. Martin Nötzel

    Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6442-9899
  4. Anna Taubenberger

    Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Shada Abuhattum

    Biological Optomechanics, Max Planck Institute for the Science of Light, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Timon Beck

    Biological Optomechanics, Max Planck Institute for the Science of Light, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Paul Müller

    Biological Optomechanics, Max Planck Institute for the Science of Light, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Shovamaye Maharana

    Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Gheorghe Cojoc

    Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Salvatore Girardo

    Biological Optomechanics, Max Planck Institute for the Science of Light, Erlangen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Andreas Hermann

    Translational Neurodegeneration Section 'Albrecht Kossel', University of Rostock, Rostock, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7364-7791
  12. Simon Alberti

    Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4017-6505
  13. Jochen Guck

    Biological Optomechanics, Max Planck Institute for the Science of Light, Erlangen, Germany
    For correspondence
    jochen.guck@mpl.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (419138906)

  • Simon Alberti
  • Jochen Guck

Volkswagen Foundation (92847)

  • Simon Alberti
  • Jochen Guck

Alexander von Humboldt-Stiftung

  • Jochen Guck

NOMIS Stiftung

  • Andreas Hermann

Hermann und Lilly Schilling-Stiftung

  • Andreas Hermann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Schlüßler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,880
    views
  • 523
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Raimund Schlüßler
  2. Kyoohyun Kim
  3. Martin Nötzel
  4. Anna Taubenberger
  5. Shada Abuhattum
  6. Timon Beck
  7. Paul Müller
  8. Shovamaye Maharana
  9. Gheorghe Cojoc
  10. Salvatore Girardo
  11. Andreas Hermann
  12. Simon Alberti
  13. Jochen Guck
(2022)
Correlative all-optical quantification of mass density and mechanics of sub-cellular compartments with fluorescence specificity
eLife 11:e68490.
https://doi.org/10.7554/eLife.68490

Share this article

https://doi.org/10.7554/eLife.68490

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    Kaima Tsukada, Rikiya Imamura ... Mikio Shimada
    Research Article

    Polynucleotide kinase phosphatase (PNKP) has enzymatic activities as 3′-phosphatase and 5′-kinase of DNA ends to promote DNA ligation and repair. Here, we show that cyclin-dependent kinases (CDKs) regulate the phosphorylation of threonine 118 (T118) in PNKP. This phosphorylation allows recruitment to the gapped DNA structure found in single-strand DNA (ssDNA) nicks and/or gaps between Okazaki fragments (OFs) during DNA replication. T118A (alanine)-substituted PNKP-expressing cells exhibited an accumulation of ssDNA gaps in S phase and accelerated replication fork progression. Furthermore, PNKP is involved in poly (ADP-ribose) polymerase 1 (PARP1)-dependent replication gap filling as part of a backup pathway in the absence of OFs ligation. Altogether, our data suggest that CDK-mediated PNKP phosphorylation at T118 is important for its recruitment to ssDNA gaps to proceed with OFs ligation and its backup repairs via the gap-filling pathway to maintain genome stability.