Tumor Biology: Cells under pressure
Packed like sardines, most cells in our body must operate in confined spaces. Neighboring cells, the extracellular fluid that surrounds cells, and the extracellular matrix that provides physical support to tissues, can all restrict the growth and motion of cells. This is exacerbated in tumors. As the cancer cells in the tumor multiply, they gradually push back the surrounding tissue, and in turn, experience varying degrees of compression or 'solid stress' (Nia et al., 2017). Increasing evidence suggests that the physical interactions between cancer cells and their microenvironment affect the signals that regulate their growth and spread.
Much of our knowledge about solid stress and its impact on tumor development stems from research on three-dimensional aggregates of cancer cells grown in the laboratory. When these aggregates – which are also known as multicellular tumor spheroids – multiply in a confined environment, such as a hydrogel, their growth is restricted (Helmlinger et al., 1997). These observations are somewhat intuitive, since cell division is an inherently physical process during which cells increase in volume and undergo striking morphological changes – both of which require space (Nam and Chaudhuri, 2018; Zlotek-Zlotkiewicz et al., 2015; Son et al., 2012).
It has been shown that restricting or reducing the volume of a cell through increased osmotic pressure – which draws water from the cell – stops them from multiplying (Nam et al., 2019; Delarue et al., 2014). Likewise, compression along one axis can suppress the growth of cells and even induce programmed cell death in tumor spheroids (Cheng et al., 2009). When applied transiently to single cells, it may also reverse the malignant phenotype, with the cells displaying behaviors of normal cells (Ricca et al., 2018).
However, full three-dimensional control of uniform compression of tumor spheroids has not been achieved to date. Now, in eLife, Giovanni Cappello, Pierre Recho and colleagues from the Université Grenoble Alpes, the Université de Lyon and the Collège de France – including Monika Dolega as first author – report a new way to study the impact of solid stress on tumor spheroids (Dolega et al., 2021).
Dolega et al. applied two strategies to compare the impact of solid stress on both single cells and tumor spheroids. To do so, they exerted osmotic pressure using osmolytes of varying sizes: small dextran molecules measuring less than 5 nm in diameter (following the standard approach), and large ones with a diameter of 15 nm or more (representing the new approach). The small dextran molecules were able to infiltrate the extracellular matrix of the spheroids, thereby applying osmotic pressure on the single cells within. However, the 15 nm dextran molecules were too big to enter the extracellular matrix: instead, the osmotic pressure acted on the entire spheroid, resulting in a global compression of the cells by the extracellular matrix (Figure 1).
By keeping the magnitude of pressure the same, Dolega et al. discovered that global compression decreased the volume of the tumor spheroids significantly more than the osmotic compression of single cells, with cells within the spheroid growing and migrating more slowly. Comparable results were also observed in single cells encapsulated in an extracellular matrix-like hydrogel. There, global compression reduced the growth and migration of the cells while osmotic compression did not. These findings suggest that solid stress in the form of global compression does indeed regulate the growth and spread of a tumor.
Dolega et al. have developed a robust approach to probe the impact of solid stress on cells in three-dimensional microenvironments, and the different outcomes observed for osmotic compression of single cells and global compression of tumor spheroids draws attention to the possibility that the extracellular matrix can act as a pressure sensor that might regulate cell behavior. It remains unclear if cells sense solid stress through the same pathways that are implicated in osmotic compression, including stretch-activated ion channels, or through alternate pathways, perhaps involving the cytoskeleton and cell-matrix adhesions (Nam et al., 2019). Probing these mechanisms will help advance our understanding of how solid stress regulates cell behavior in a wide range of contexts, from embryonic development to cancer.
References
-
Compressive stress inhibits proliferation in tumor spheroids through a volume limitationBiophysical Journal 107:1821–1828.https://doi.org/10.1016/j.bpj.2014.08.031
-
Solid stress inhibits the growth of multicellular tumor spheroidsNature Biotechnology 15:778–783.https://doi.org/10.1038/nbt0897-778
-
Solid stress and elastic energy as measures of tumour mechanopathologyNature Biomedical Engineering 1:0004.https://doi.org/10.1038/s41551-016-0004
-
Optical volume and mass measurements show that mammalian cells swell during mitosisJournal of Cell Biology 211:765–774.https://doi.org/10.1083/jcb.201505056
Article and author information
Author details
Publication history
Copyright
© 2021, Indana and Chaudhuri
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,801
- views
-
- 273
- downloads
-
- 5
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Physics of Living Systems
Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating Drosophila embryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.
-
- Physics of Living Systems
The coordinated motion of animal groups through fluids is thought to reduce the cost of locomotion to individuals in the group. However, the connection between the spatial patterns observed in collectively moving animals and the energetic benefits at each position within the group remains unclear. To address this knowledge gap, we study the spontaneous emergence of cohesive formations in groups of fish, modeled as flapping foils, all heading in the same direction. We show in pairwise formations and with increasing group size that (1) in side-by-side arrangements, the reciprocal nature of flow coupling results in an equal distribution of energy requirements among all members, with reduction in cost of locomotion for swimmers flapping inphase but an increase in cost for swimmers flapping antiphase, and (2) in inline arrangements, flow coupling is non-reciprocal for all flapping phase, with energetic savings in favor of trailing swimmers, but only up to a finite number of swimmers, beyond which school cohesion and energetic benefits are lost at once. We explain these findings mechanistically and we provide efficient diagnostic tools for identifying locations in the wake of single and multiple swimmers that offer opportunities for hydrodynamic benefits to aspiring followers. Our results imply a connection between the resources generated by flow physics and social traits that influence greedy and cooperative group behavior.