Homotopic contralesional excitation suppresses spontaneous circuit repair and global network reconnections following ischemic stroke
Abstract
Understanding circuit-level manipulations that affect the brain's capacity for plasticity will inform the design of targeted interventions that enhance recovery after stroke. Following stroke, increased contralesional activity (e.g. use of the unaffected limb) can negatively influence recovery, but it is unknown which specific neural connections exert this influence, and to what extent increased contralesional activity affects systems- and molecular-level biomarkers of recovery. Here, we combine optogenetic photostimulation with optical intrinsic signal imaging (OISI) to examine how contralesional excitatory activity affects cortical remodeling after stroke in mice. Following photothrombosis of left primary somatosensory forepaw (S1FP) cortex, mice either recovered spontaneously or received chronic optogenetic excitation of right S1FP over the course of 4 weeks. Contralesional excitation suppressed perilesional S1FP remapping and was associated with abnormal patterns of stimulus-evoked activity in the unaffected limb. This maneuver also prevented the restoration of resting-state functional connectivity (RSFC) within the S1FP network, RSFC in several networks functionally-distinct from somatomotor regions, and resulted in persistent limb-use asymmetry. In stimulated mice, perilesional tissue exhibited transcriptional changes in several genes relevant for recovery. Our results suggest that contralesional excitation impedes local and global circuit reconnection through suppression of cortical activity and several neuroplasticity-related genes after stroke, and highlight the importance of site selection for therapeutic intervention after focal ischemia.
Data availability
Data reported in Figures 1, 6, 7 are publicly available:Fig. 1: https://figshare.com/articles/dataset/Cylinder_Rearing_Scores/19773487Fig. 6: https://figshare.com/articles/dataset/Neuroimaging_Data_Pre_Post_Stroke_for_26-03-2021-RA-eLife-68852/19773244Fig. 7: https://figshare.com/articles/dataset/RT-PCR_Data/19773364Data reported in Figures 2, 3, 4, 5 are unavailable due to technical issues with storage hard drives.Analysis code is available at https://github.com/BauerLabCodebase
Article and author information
Author details
Funding
National Institutes of Health (R01NS102870)
- Adam Q Bauer
National Institutes of Health (F31NS103275)
- Zachary Pollack Rosenthal
McDonnell Center for Systems Neuroscience
- Adam Q Bauer
The Alborada Trust
- Tadeusz Wieloch
The Wachtmeister Foundation
- Tadeusz Wieloch
Swedish Research Council
- Tadeusz Wieloch
National Institutes of Health (K25NS083754)
- Adam Q Bauer
National Institutes of Health (R37NS110699)
- Jin-Moo Lee
National Institutes of Health (R01NS084028)
- Jin-Moo Lee
National Institutes of Health (R01NS094692)
- Jin-Moo Lee
National Institutes of Health (R01NS078223)
- Joseph P Culver
National Institutes of Health (P01NS080675)
- Joseph P Culver
National Institutes of Health (R01NS099429)
- Joseph P Culver
National Institutes of Health (F31NS089135)
- Andrew W Kraft
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All procedures described below were approved by theWashington University Animal Studies Committee in compliance with theAmerican Association for Accreditation of Laboratory Animal Care guidelines (Protocol #20-0022)
Copyright
© 2022, Bice et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,333
- views
-
- 316
- downloads
-
- 19
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the ‘here and now’ depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching. Our study established a novel method for mapping thought patterns onto the brain activity that occurs at different moments of a film, which does not disrupt the time course of brain activity or the movie-watching experience. We found moments when experience sampling highlighted engagement with multi-sensory features of the film or highlighted thoughts with episodic features, regions of sensory cortex were more active and subsequent memory for events in the movie was better—on the other hand, periods of intrusive distraction emerged when activity in regions of association cortex within the frontoparietal system was reduced. These results highlight the critical role sensory systems play in the multi-modal experience of movie-watching and provide evidence for the role of association cortex in reducing distraction when we watch films.
-
- Neuroscience
Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors. To address this, we examined the role of CGRP neurons in active defensive behavior using a predator-like robot programmed to chase mice. Our electrophysiological results revealed that CGRP neurons encode the intensity of aversive stimuli through variations in firing durations and amplitudes. Optogenetic activation of CGRP neuron during robot chasing elevated flight responses in both conditioning and retention tests, presumably by amyplifying the perception of the threat as more imminent and dangerous. In contrast, animals with inactivated CGRP neurons exhibited reduced flight responses, even when the robot was programmed to appear highly threatening during conditioning. These findings expand the understanding of CGRP neurons in the PBN as a critical alarm system, capable of dynamically regulating active defensive behaviors by amplifying threat perception, ensuring adaptive responses to varying levels of danger.