mRNA vaccination in people over 80 years of age induces strong humoral immune responses against SARS-CoV-2 with cross neutralisation of P.1 Brazilian variant

  1. Helen Parry
  2. Gokhan Tut
  3. Rachel Bruton
  4. Sian Faustini
  5. Christine Stephens
  6. Philip Saunders
  7. Christopher Bentley
  8. Katherine Hilyard
  9. Kevin Brown
  10. Gayatri Amirthalingam
  11. Sue Charlton
  12. Stephanie Leung
  13. Emily Chiplin
  14. Naomi S Coombes
  15. Kevin R Bewley
  16. Elizabeth J Penn
  17. Cathy Rowe
  18. Ashley Otter
  19. Rosie Watts
  20. Silvia D'Arcangelo
  21. Bassam Hallis
  22. Andrew Makin
  23. Alex Richter
  24. Jianmin Zuo
  25. Paul Moss  Is a corresponding author
  1. University of Birmingham, United Kingdom
  2. Quinton and Harborne PCN, United Kingdom
  3. Vaccine Taskforce, United Kingdom
  4. National infection Service, United Kingdom
  5. National Infection Service, United Kingdom
  6. Oxford Immunotec Ltd, United Kingdom

Abstract

Age is the major risk factor for mortality after SARS-CoV-2 infection and older people have received priority consideration for COVID-19 vaccination. However vaccine responses are often suboptimal in this age group and few people over the age of 80 years were included in vaccine registration trials. We determined the serological and cellular response to spike protein in 100 people aged 80-96 years at 2 weeks after second vaccination with the Pfizer BNT162b2 mRNA vaccine. Antibody responses were seen in every donor with high titres in 98%. Spike-specific cellular immune responses were detectable in only 63% and correlated with humoral response. Previous SARS-CoV-2 infection substantially increased antibody responses after one vaccine and antibody and cellular responses remained 28-fold and 3-fold higher respectively after dual vaccination. Post-vaccine sera mediated strong neutralisation of live Victoria infection and although neutralisation titres were reduced 14-fold against the P.1 variant first discovered in Brazil they remained largely effective. These data demonstrate that the mRNA vaccine platform delivers strong humoral immunity in people up to 96 years of age and retains broad efficacy against the P.1 Variant of Concern.

Data availability

All primary data are available at https://doi.org/10.5281/zenodo.4740081

Article and author information

Author details

  1. Helen Parry

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  2. Gokhan Tut

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  3. Rachel Bruton

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  4. Sian Faustini

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  5. Christine Stephens

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  6. Philip Saunders

    Quinton and Harborne PCN, Ridgacre House Surgery, Quinton, United Kingdom
    Competing interests
    No competing interests declared.
  7. Christopher Bentley

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  8. Katherine Hilyard

    Vaccine Taskforce, Department for Business, Energy and Industrial Strategy, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Kevin Brown

    National infection Service, Public Health England, Colindale, London NW9 5EQ, United Kingdom
    Competing interests
    No competing interests declared.
  10. Gayatri Amirthalingam

    National infection Service, Public Health England, Colindale, London NW9 5EQ, United Kingdom
    Competing interests
    No competing interests declared.
  11. Sue Charlton

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  12. Stephanie Leung

    Research, National Infection Service, Salisbury, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8880-2977
  13. Emily Chiplin

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  14. Naomi S Coombes

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  15. Kevin R Bewley

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  16. Elizabeth J Penn

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  17. Cathy Rowe

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  18. Ashley Otter

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  19. Rosie Watts

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  20. Silvia D'Arcangelo

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  21. Bassam Hallis

    National infection Service, Public Health England, Porton Down, Salisbury, SP4 OJG, United Kingdom
    Competing interests
    No competing interests declared.
  22. Andrew Makin

    Oxford Immunotec Ltd, Abingdon, OX14 4SE, United Kingdom
    Competing interests
    Andrew Makin, is affiliated with Oxford Immunotec Ltd. The author has no financial interests to declare..
  23. Alex Richter

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  24. Jianmin Zuo

    University of Birmingham, Birmingham, United Kingdom
    Competing interests
    No competing interests declared.
  25. Paul Moss

    University of Birmingham, Birmingham, United Kingdom
    For correspondence
    p.moss@bham.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6895-1967

Funding

National Core Studies (Immunity programme)

  • Helen Parry
  • Gokhan Tut
  • Rachel Bruton
  • Sian Faustini
  • Christine Stephens
  • Paul Moss

UK Coronavirus Immunology Consortium (UKRI/DHSC)

  • Helen Parry
  • Gokhan Tut
  • Rachel Bruton
  • Sian Faustini
  • Christine Stephens
  • Paul Moss

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent, and consent to publish, was obtained. The study was approved by UPH IRAS ethics 282164, Health Research Authority UK.

Copyright

© 2021, Parry et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,745
    views
  • 128
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Helen Parry
  2. Gokhan Tut
  3. Rachel Bruton
  4. Sian Faustini
  5. Christine Stephens
  6. Philip Saunders
  7. Christopher Bentley
  8. Katherine Hilyard
  9. Kevin Brown
  10. Gayatri Amirthalingam
  11. Sue Charlton
  12. Stephanie Leung
  13. Emily Chiplin
  14. Naomi S Coombes
  15. Kevin R Bewley
  16. Elizabeth J Penn
  17. Cathy Rowe
  18. Ashley Otter
  19. Rosie Watts
  20. Silvia D'Arcangelo
  21. Bassam Hallis
  22. Andrew Makin
  23. Alex Richter
  24. Jianmin Zuo
  25. Paul Moss
(2021)
mRNA vaccination in people over 80 years of age induces strong humoral immune responses against SARS-CoV-2 with cross neutralisation of P.1 Brazilian variant
eLife 10:e69375.
https://doi.org/10.7554/eLife.69375

Share this article

https://doi.org/10.7554/eLife.69375

Further reading

    1. Microbiology and Infectious Disease
    Brooke E White, Carolyn L Hodo ... Rick L Tarleton
    Research Article

    Infection with the protozoan parasite Trypanosoma cruzi is generally well-controlled by host immune responses, but appears to be rarely eliminated. The resulting persistent, low-level infection results in cumulative tissue damage with the greatest impact generally in the heart in the form of chagasic cardiomyopathy. The relative success in immune control of T. cruzi infection usually averts acute phase death but has the negative consequence that the low-level presence of T. cruzi in hosts is challenging to detect unequivocally. Thus, it is difficult to identify those who are actively infected and, as well, problematic to gauge the impact of treatment, particularly in the evaluation of the relative efficacy of new drugs. In this study, we employ DNA fragmentation and high numbers of replicate PCR reaction (‘deep-sampling’) and to extend the quantitative range of detecting T. cruzi in blood by at least three orders of magnitude relative to current protocols. When combined with sampling blood at multiple time points, deep sampling of fragmented DNA allowed for detection of T. cruzi in all infected hosts in multiple host species, including humans, macaques, and dogs. In addition, we provide evidence for a number of characteristics not previously rigorously quantified in the population of hosts with naturally acquired T. cruzi infection, including, a >6 log variation between chronically infected individuals in the stable parasite levels, a continuing decline in parasite load during the second and third years of infection in some hosts, and the potential for parasite load to change dramatically when health conditions change. Although requiring strict adherence to contamination–prevention protocols and significant resources, deep-sampling PCR provides an important new tool for assessing therapies and for addressing long-standing questions in T. cruzi infection and Chagas disease.

    1. Microbiology and Infectious Disease
    2. Neuroscience
    Aleksandra Prochera, Anoohya N Muppirala ... Meenakshi Rao
    Research Article

    Glial cells of the enteric nervous system (ENS) interact closely with the intestinal epithelium and secrete signals that influence epithelial cell proliferation and barrier formation in vitro. Whether these interactions are important in vivo, however, is unclear because previous studies reached conflicting conclusions (Prochera and Rao, 2023). To better define the roles of enteric glia in steady state regulation of the intestinal epithelium, we characterized the glia in closest proximity to epithelial cells and found that the majority express the gene Proteolipid protein 1 (PLP1) in both mice and humans. To test their functions using an unbiased approach, we genetically depleted PLP1+ cells in mice and transcriptionally profiled the small and large intestines. Surprisingly, glial loss had minimal effects on transcriptional programs and the few identified changes varied along the gastrointestinal tract. In the ileum, where enteric glia had been considered most essential for epithelial integrity, glial depletion did not drastically alter epithelial gene expression but caused a modest enrichment in signatures of Paneth cells, a secretory cell type important for innate immunity. In the absence of PLP1+ glia, Paneth cell number was intact, but a subset appeared abnormal with irregular and heterogenous cytoplasmic granules, suggesting a secretory deficit. Consistent with this possibility, ileal explants from glial-depleted mice secreted less functional lysozyme than controls with corresponding effects on fecal microbial composition. Collectively, these data suggest that enteric glia do not exert broad effects on the intestinal epithelium but have an essential role in regulating Paneth cell function and gut microbial ecology.