Unraveling the influences of sequence and position on yeast uORF activity using massively parallel reporter systems and machine learning

Abstract

Upstream open reading frames (uORFs) are potent cis-acting regulators of mRNA translation and nonsense-mediated decay (NMD). While both AUG- and non-AUG initiated uORFs are ubiquitous in ribosome profiling studies, few uORFs have been experimentally tested. Consequently, the relative influences of sequence, structural, and positional features on uORF activity have not been determined. We quantified thousands of yeast uORFs using massively parallel reporter assays in wildtype and ∆upf1 yeast. While nearly all AUG uORFs were robust repressors, most non-AUG uORFs had relatively weak impacts on expression. Machine learning regression modeling revealed that both uORF sequences and locations within transcript leaders predict their effect on gene expression. Indeed, alternative transcription start sites highly influenced uORF activity. These results define the scope of natural uORF activity, identify features associated with translational repression and NMD, and suggest that the locations of uORFs in transcript leaders are nearly as predictive as uORF sequences.

Data availability

Sequencing data have been deposited in NCBI SRA under accession PRJNA721222.

The following data sets were generated

Article and author information

Author details

  1. Gemma E May

    Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christina Akirtava

    Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew Agar-Johnson

    Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jelena Micic

    Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John Woolford

    Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Joel McManus

    Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
    For correspondence
    mcmanus@andrew.cmu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6605-2642

Funding

National Institutes of Health (R01GM121895)

  • Gemma E May
  • Christina Akirtava
  • Matthew Agar-Johnson
  • Joel McManus

National Institutes of Health (R35GM145317)

  • Gemma E May
  • Christina Akirtava
  • Joel McManus

National Institutes of Health (R01GM028301)

  • Jelena Micic
  • John Woolford

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, May et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,283
    views
  • 284
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gemma E May
  2. Christina Akirtava
  3. Matthew Agar-Johnson
  4. Jelena Micic
  5. John Woolford
  6. Joel McManus
(2023)
Unraveling the influences of sequence and position on yeast uORF activity using massively parallel reporter systems and machine learning
eLife 12:e69611.
https://doi.org/10.7554/eLife.69611

Share this article

https://doi.org/10.7554/eLife.69611

Further reading

    1. Genetics and Genomics
    Yi Li, Long Gong ... Shangbang Gao
    Research Article

    Resistance to anthelmintics, particularly the macrocyclic lactone ivermectin (IVM), presents a substantial global challenge for parasite control. We found that the functional loss of an evolutionarily conserved E3 ubiquitin ligase, UBR-1, leads to IVM resistance in Caenorhabditis elegans. Multiple IVM-inhibiting activities, including viability, body size, pharyngeal pumping, and locomotion, were significantly ameliorated in various ubr-1 mutants. Interestingly, exogenous application of glutamate induces IVM resistance in wild-type animals. The sensitivity of all IVM-affected phenotypes of ubr-1 is restored by eliminating proteins associated with glutamate metabolism or signaling: GOT-1, a transaminase that converts aspartate to glutamate, and EAT-4, a vesicular glutamate transporter. We demonstrated that IVM-targeted GluCls (glutamate-gated chloride channels) are downregulated and that the IVM-mediated inhibition of serotonin-activated pharynx Ca2+ activity is diminished in ubr-1. Additionally, enhancing glutamate uptake in ubr-1 mutants through ceftriaxone completely restored their IVM sensitivity. Therefore, UBR-1 deficiency-mediated aberrant glutamate signaling leads to ivermectin resistance in C. elegans.

    1. Genetics and Genomics
    Minsoo Noh, Xiangguo Che ... Sihoon Lee
    Research Article

    Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1–84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1–34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1–34) induced acute calcemic and phosphaturic responses comparable to PTH(1–34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1–34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.