Abstract

Senescent cells have detrimental effects across tissues with aging but may have beneficial effects on tissue repair, specifically on skin wound healing. However, the potential role of senescent cells in fracture healing has not been defined. Here, we performed an in silico analysis of public mRNAseq data and found that senescence and senescence-associated secretory phenotype (SASP) markers increased during fracture healing. We next directly established that the expression of senescence biomarkers increased markedly during murine fracture healing. We also identified cells in the fracture callus that displayed hallmarks of senescence, including distension of satellite heterochromatin and telomeric DNA damage; the specific identity of these cells, however, requires further characterization. Then, using a genetic mouse model (Cdkn2aLUC) containing a Cdkn2aInk4a-driven luciferase reporter, we demonstrated transient in vivo senescent cell accumulation during callus formation. Finally, we intermittently treated young adult mice following fracture with drugs that selectively eliminate senescent cells ('senolytics', Dasatinib plus Quercetin), and showed that this regimen both decreased senescence and SASP markers in the fracture callus and significantly accelerated the time course of fracture healing. Our findings thus demonstrate that senescent cells accumulate transiently in the murine fracture callus and, in contrast to the skin, their clearance does not impair but rather improves fracture healing.

Data availability

RNA-seq data was generated from GSE152677.

The following previously published data sets were used

Article and author information

Author details

  1. Dominik Saul

    Division of Endocrinology, Diabetes, Metabolism, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0673-3710
  2. David G Monroe

    Division of Endocrinology, Diabetes, Metabolism, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jennifer L Rowsey

    Division of Endocrinology, Diabetes, Metabolism, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Robyn Laura Kosinsky

    Division of Endocrinology, Diabetes, Metabolism, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephanie J Vos

    Division of Endocrinology, Diabetes, Metabolism, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Madison L Doolittle

    Division of Endocrinology, Diabetes, Metabolism, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Joshua N Farr

    Endocrinology, Mayo Clinic, Rochester, United States
    For correspondence
    Farr.Joshua@mayo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3179-6414
  8. Sundeep Khosla MD

    Endocrinology, Mayo Clinic, Rochester, United States
    For correspondence
    khosla.sundeep@mayo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2936-4372

Funding

National Institute on Aging (P01 AG062413)

  • Joshua N Farr

National Institute on Aging (R21 AG065868)

  • Joshua N Farr

National Institute on Aging (R01 AG063707)

  • David G Monroe

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK128552)

  • Joshua N Farr

German Research Foundation (413501650)

  • Dominik Saul

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal studies were performed under protocols approved by the Institutional Animal Care and Use Committee (IACUC), and experiments were performed in accordance with Mayo Clinic IACUC guidelines.

Copyright

© 2021, Saul et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,583
    views
  • 463
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dominik Saul
  2. David G Monroe
  3. Jennifer L Rowsey
  4. Robyn Laura Kosinsky
  5. Stephanie J Vos
  6. Madison L Doolittle
  7. Joshua N Farr
  8. Sundeep Khosla MD
(2021)
Modulation of fracture healing by the transient accumulation of senescent cells
eLife 10:e69958.
https://doi.org/10.7554/eLife.69958

Share this article

https://doi.org/10.7554/eLife.69958

Further reading

    1. Medicine
    2. Neuroscience
    Emily M Adamic, Adam R Teed ... Sahib Khalsa
    Research Article

    Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals. In contrast, during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e. when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Furthermore, the dysgranular mid-insula may indeed be a ‘locus of disruption’ for psychiatric disorders.

    1. Medicine
    Yanling Huang, Haocong Mo ... Geyang Xu
    Research Article

    Glucagon-like peptide 1 (GLP-1) is a gut-derived hormone secreted by intestinal L cells and vital for postprandial glycemic control. As open-type enteroendocrine cells, whether L cells can sense mechanical stimuli caused by chyme and thus regulate GLP-1 synthesis and secretion is unexplored. Molecular biology techniques revealed the expression of Piezo1 in intestinal L cells. Its level varied in different energy status and correlates with blood glucose and GLP-1 levels. Mice with L cell-specific loss of Piezo1 (Piezo1 IntL-CKO) exhibited impaired glucose tolerance, increased body weight, reduced GLP-1 production and decreased CaMKKβ/CaMKIV-mTORC1 signaling pathway under normal chow diet or high-fat diet. Activation of the intestinal Piezo1 by its agonist Yoda1 or intestinal bead implantation increased the synthesis and secretion of GLP-1, thus alleviated glucose intolerance in diet-induced-diabetic mice. Overexpression of Piezo1, Yoda1 treatment or stretching stimulated GLP-1 production and CaMKKβ/CaMKIV-mTORC1 signaling pathway, which could be abolished by knockdown or blockage of Piezo1 in primary cultured mouse L cells and STC-1 cells. These experimental results suggest a previously unknown regulatory mechanism for GLP-1 production in L cells, which could offer new insights into diabetes treatments.