A unifying mechanism governing inter-brain neural relationship during social interactions

  1. Wujie Zhang  Is a corresponding author
  2. Maimon C Rose
  3. Michael M Yartsev  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

A key goal of social neuroscience is to understand the inter-brain neural relationship - the relationship between the neural activity of socially interacting individuals. Decades of research investigating this relationship have focused on the similarity in neural activity across brains. Here we instead asked how neural activity differs between brains, and how that difference evolves alongside activity patterns shared between brains. Applying this framework to bats engaged in spontaneous social interactions revealed two complementary phenomena characterizing the inter-brain neural relationship: fast fluctuations of activity difference across brains unfolding in parallel with slow activity covariation across brains. A model reproduced these observations and generated multiple predictions that we confirmed using experimental data involving pairs of bats and a larger social group of bats. The model suggests that a simple computational mechanism involving positive and negative feedback could explain diverse experimental observations regarding the inter-brain neural relationship.

Data availability

Source code for the models is available at https://github.com/zhangwujie/Neurobat-lab-codes/tree/master/Interbrain-model

The following data sets were generated

Article and author information

Author details

  1. Wujie Zhang

    Department of Bioengineering, University of California, Berkeley, Berkeley, United States
    For correspondence
    wujie@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Maimon C Rose

    Department of Bioengineering, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael M Yartsev

    Department of Bioengineering, University of California, Berkeley, Berkeley, United States
    For correspondence
    myartsev@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0952-2801

Funding

National Institutes of Health (DP2-DC016163)

  • Michael M Yartsev

Dana Foundation

  • Michael M Yartsev

National Institute of Mental Health (1-R01MH25387-01)

  • Michael M Yartsev

New York Stem Cell Foundation (NYSCF-R-NI40)

  • Michael M Yartsev

Alfred P. Sloan Foundation (FG-2017-9646)

  • Michael M Yartsev

Brain Research Foundation (BRFSG-2017-09)

  • Michael M Yartsev

National Science Foundation (NSF- 1550818)

  • Michael M Yartsev

Packard Fellowship (2017-66825)

  • Michael M Yartsev

Klingenstein-Simons Fellowship

  • Michael M Yartsev

Pew Charitable Trust (00029645)

  • Michael M Yartsev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures complied with all relevant ethical regulations for animal testing and research and were approved by the Institutional Animal Care and Use Committee of the University of California, Berkeley (protocol number AUP-2015-01-7122-2).

Copyright

© 2022, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wujie Zhang
  2. Maimon C Rose
  3. Michael M Yartsev
(2022)
A unifying mechanism governing inter-brain neural relationship during social interactions
eLife 11:e70493.
https://doi.org/10.7554/eLife.70493

Share this article

https://doi.org/10.7554/eLife.70493

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.