Evolution of sexual conflict in scorpionflies
Abstract
Sexual conflict - opposite reproductive/genetic interests between sexes - can be a significant driver of insect evolution. Scorpionflies (Insecta: Mecoptera) are models in sexual conflict research due to their large variety of mating practices, including coercive behaviour and nuptial gift provisioning. However, the role of palaeontology in sexual conflict studies remains negligible, namely due to the paucity of well-preserved fossils. Here we describe three male scorpionflies from Cretaceous and Eocene ambers. The structure of notal and postnotal organs is analysed in extant and extinct forms; a depression below the base of the notal organ in different panorpid species spatially matches the anterior fold of the female's wing. Based on disparate abdominal configurations and correlations in extant relatives, we posit that each new fossil taxon had a different mating approach along a nuptial gifting-coercive spectrum. The Eocene specimen possesses extreme female clamping abdominal armature, suggesting a degree of sexual coercion greater than in any other known scorpionfly, extinct or extant. The fossil record of abdominal modifications in male scorpionflies documents a relatively late evolution (Eocene) of long notal organs indicating oppressive behaviour toward a female during mating. Our findings reveal a wider array of mating-related morphological specialisations among extinct Panorpoidea, likely reflecting more diversified past mating strategies and behaviours in this group, and represent first steps towards gaining a deep-time perspective on the evolution of sexual conflict over mating among insects.
Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional information related to this paper may be requested from the authors. Investigated fossils are available in public institutions: at the Institutional Collection from the El Soplao Cave (Government of Cantabria), Celis, Cantabria, N Spain and at the collection from the Museum of the Institute of Systematics and Evolution of Animals (ISEA), Polish Academy of Sciences (PAS), Kraków, Poland.
Article and author information
Author details
Funding
National Science Center, Poland (2013/09/B/NZ8/03270)
- Agnieszka Soszyńska-Maj
- Katarzyna Kopeć
- Wieslaw Krzemiński
National Science Center, Poland (2016/23/B/NZ8/00936)
- Agnieszka Soszyńska-Maj
- Ewa Krzemińska
- Kornelia Skibińska
- Katarzyna Kopeć
- Wieslaw Krzemiński
AEI/FEDER, UE (CGL2017-84419)
- Ricardo Pérez-de la Fuente
High-level Talents, Dali University (KY2096124040)
- Ji-Shen Wang
National Science Center, Poland (2018/31/B/NZ8/02113)
- Krzysztof Szpila
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Soszyńska-Maj et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,481
- views
-
- 264
- downloads
-
- 8
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
Cichlid fishes inhabiting the East African Great Lakes, Victoria, Malawi, and Tanganyika, are textbook examples of parallel evolution, as they have acquired similar traits independently in each of the three lakes during the process of adaptive radiation. In particular, ‘hypertrophied lip’ has been highlighted as a prominent example of parallel evolution. However, the underlying molecular mechanisms remain poorly understood. In this study, we conducted an integrated comparative analysis between the hypertrophied and normal lips of cichlids across three lakes based on histology, proteomics, and transcriptomics. Histological and proteomic analyses revealed that the hypertrophied lips were characterized by enlargement of the proteoglycan-rich layer, in which versican and periostin proteins were abundant. Transcriptome analysis revealed that the expression of extracellular matrix-related genes, including collagens, glycoproteins, and proteoglycans, was higher in hypertrophied lips, regardless of their phylogenetic relationships. In addition, the genes in Wnt signaling pathway, which is involved in promoting proteoglycan expression, was highly expressed in both the juvenile and adult stages of hypertrophied lips. Our comprehensive analyses showed that hypertrophied lips of the three different phylogenetic origins can be explained by similar proteomic and transcriptomic profiles, which may provide important clues into the molecular mechanisms underlying phenotypic parallelisms in East African cichlids.
-
- Evolutionary Biology
Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here, we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting ‘microbiome clock’ predicts host chronological age. Deviations from the clock’s predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual’s ‘microbiome age’ does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.