Abstract

Precise, targeted genome editing by CRISPR/Cas9 is key for basic research and translational approaches in model and non-model systems. While active in all species tested so far, editing efficiencies still leave room for improvement. The bacterial Cas9 needs to be efficiently shuttled into the nucleus as attempted by fusion with nuclear localization signals (NLSs). Additional peptide tags such as FLAG- or myc-tags are usually added for immediate detection or straight-forward purification. Immediate activity is usually granted by administration of pre-assembled protein/RNA complexes. We present the 'hei-tag (high efficiency-tag)' which boosts the activity of CRISPR/Cas genome editing tools already when supplied as mRNA. The addition of the hei-tag, a myc tag coupled to an optimized NLS via a flexible linker, to Cas9 or a C-to-T base editor dramatically enhances the respective targeting efficiency. This results in an increase in bi-allelic editing, yet reduction of allele variance, indicating an immediate activity even at early developmental stages. The hei-tag boost is active in model systems ranging from fish to mammals, including tissue culture applications. The simple addition of the hei-tag allows to instantly upgrade existing and potentially highly adapted systems as well as to establish novel highly efficient tools immediately applicable at the mRNA level.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Thomas Thumberger

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    Thomas Thumberger, patent application pending (EP21166099.8) related to the findings described.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8485-457X
  2. Tinatini Tavhelidse-Suck

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    Tinatini Tavhelidse-Suck, patent application pending (EP21166099.8) related to the findings described.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6103-9019
  3. Jose Arturo Gutierrez-Triana

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    Jose Arturo Gutierrez-Triana, patent application pending (EP21166099.8) related to the findings described.
  4. Alex Cornean

    Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3727-7057
  5. Rebekka Medert

    Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  6. Bettina Welz

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  7. Marc Freichel

    Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1387-2636
  8. Joachim Wittbrodt

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    For correspondence
    jochen.wittbrodt@cos.uni-heidelberg.de
    Competing interests
    Joachim Wittbrodt, patent application pending (EP21166099.8) related to the findings described.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8550-7377

Funding

Deutsche Forschungsgemeinschaft (CRC873,project A3)

  • Joachim Wittbrodt

Deutsche Forschungsgemeinschaft (FOR2509 P10,WI 1824/9-1)

  • Joachim Wittbrodt

Deutsche Forschungsgemeinschaft (CRC1118,project S03)

  • Marc Freichel

ERC-SyG H2020 (NO 810172)

  • Joachim Wittbrodt

Deutsche Forschungsgemeinschaft (3DMM2O, EXC 2082/1 Wittbrodt C3)

  • Joachim Wittbrodt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Thumberger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,448
    views
  • 640
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas Thumberger
  2. Tinatini Tavhelidse-Suck
  3. Jose Arturo Gutierrez-Triana
  4. Alex Cornean
  5. Rebekka Medert
  6. Bettina Welz
  7. Marc Freichel
  8. Joachim Wittbrodt
(2022)
Boosting targeted genome editing using the hei-tag
eLife 11:e70558.
https://doi.org/10.7554/eLife.70558

Share this article

https://doi.org/10.7554/eLife.70558

Further reading

    1. Genetics and Genomics
    Minsoo Noh, Xiangguo Che ... Sihoon Lee
    Research Article

    Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1–84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1–34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1–34) induced acute calcemic and phosphaturic responses comparable to PTH(1–34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1–34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.

    1. Developmental Biology
    2. Genetics and Genomics
    Menglei Yang, Hafiz Muhammad Jafar Hussain ... Baolu Shi
    Research Article

    Asthenoteratozoospermia, a prevalent cause of male infertility, lacks a well-defined etiology. DNAH12 is a special dynein featured by the absence of a microtubule-binding domain, however, its functions in spermatogenesis remain largely unknown. Through comprehensive genetic analyses involving whole-exome sequencing and subsequent Sanger sequencing on infertile patients and fertile controls from six distinct families, we unveiled six biallelic mutations in DNAH12 that co-segregate recessively with male infertility in the studied families. Transmission electron microscopy (TEM) revealed pronounced axonemal abnormalities, including inner dynein arms (IDAs) impairment and central pair (CP) loss in sperm flagella of the patients. Mouse models (Dnah12-/- and Dnah12mut/mut) were generated and recapitulated the reproductive defects in the patients. Noteworthy, DNAH12 deficiency did not show effects on cilium organization and function. Mechanistically, DNAH12 was confirmed to interact with two other IDA components DNALI1 and DNAH1, while disruption of DNAH12 leads to failed recruitment of DNALI1 and DNAH1 to IDAs and compromised sperm development. Furthermore, DNAH12 also interacts with radial spoke head proteins RSPH1, RSPH9, and DNAJB13 to regulate CP stability. Moreover, the infertility of Dnah12-/- mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. Collectively, DNAH12 plays a crucial role in the proper organization of axoneme in sperm flagella, but not cilia, by recruiting DNAH1 and DNALI1 in both humans and mice. These findings expand our comprehension of dynein component assembly in flagella and cilia and provide a valuable marker for genetic counseling and diagnosis of asthenoteratozoospermia in clinical practice.